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TECHNICAL PAPER

THE ROLE OF FAILURE/PROBLEMS IN ENGINEERING:

A COMMENTARY ON FAILURES EXPERIENCEDmLESSONS LEARNED

I. INTRODUCTION

"Quality is our job one" is the phrase heard continuously. In a technological age, our

lives are influenced strongly by quality or the lack thereof° Our personal lives are affected.

Our professional lives are driven by its focus. We all are concerned with who our customer is

and how we meet his or her requirements to build a better product. How do we meet the

goals of total quality management (TQM)? is our pressing question. Many tools are in place

undergirded with a management theory and a companion set of principles. Many other tools

are being developed. However9 if the goals are to be achieved, we must have knowledge and

understanding. One way of achieving understanding and insight is through studying problems

and failures. The study of problems, in the presence of appropriate theory, produces sets of

principles important to achieving quality, first of all, and second, helps us focus our technology

and better understand our expertise and the physics of the problem. This report deals with

the principles derived and lessons learned from years of space flight engineering. A separate

report, to be published later, is a compilation of synopses of the problems experienced°

These reports are based on three perspectives: (1) 51-L space shuttle Challenger

accident investigation, (2) safe return of the shuttle to flight activities and the continuing

flights, and (3) 35 years of engineering experience. The general finding upon which the report

is based is that "failure, problems, in general, were not due to undiscovered or missing

theory; but to the neglect or oversight of basic principles" (fig. 1). These oversights are in

management, criteria, procedures, philosophy, test, analysis, communication/documentation

and project management areas of a program.

This is not meant to down play technology--technology is foundational to our busi-

ness and must be vigorously pursued. We get excited about technology, selling it well, and do

an outstanding job in its development while other key ingredients appear to be mundane in
comparison and therefore take the back seat. This should not be the case.

The study and importance of failure in design evolution is well documented. 1-3

Understanding prior failures provides the basis for technology development, better solutions,

systems operation points near margins, and safety. All designs by definition are designed for

failure. As the design evolves and changes, it forces changes in the requirements, thus, the

performance changes. Reference 1 discusses these compromises of design.

"The requirements for design conflict and cannot be reconciled. All designs for

devices are in some degree failures, either because they flout one or another of

the requirements or because they are compromises, and compromise implies a
degree of failure.

"Failure is inherent in all useful design not only because all requirements of

economy derive from insatiable wishes, but more immediately because certain

quite specific conflicts are inevitable once requirements for economy are

admitted; and conflicts even among the requirements of use are not unknown.



"It follows that all designs for useare arbitrary. The designer or his client has
to choose to what degreeand where there shall be failure. Thus the shapeof all
designed things is the product of arbitrary choice. If you vary the terms of your
compromise--say more speed,more heat, less safety, more discomfort, lower
first cost--then you vary the shapeof the thing designed.It is quite impossible
for any design to be 'the logical outcome of the requirements' simply because
the requirements,being in conflict, their logical outcome is an impossibility."

This being the case, it is imperative that failures, as well as the problems experienced,
be understood. As the Greeks say about the Phoenix bird, that out of the ashes of destruction
rises newness.Problems and our reaction to them determine character and through this effort
comes the greatest learning and achievement.As man has pushed technology to achieve the
successesof space exploration, many problems have occurred, some resulting in major fail-
ures, even national disasters. Disasters bring one to the ashes,both personally and collec-
tively, both technically and economically. Out of these ashes must rise again the new
Phoenix. There is a story that goes something like this:

"A farmer and his wife had experienceda very good couple of years' harvests.
They were comfortable, with money in the bank. They discussedthe situation,
noticing their cattle and the rickety old barn. They decided to build a new
modern barn, replacing the old one before winter. The barn was built with
comfortable stalls, heat, and lighting. The barn was completed and the old barn
demolished. They decided to go to town and celebrate. As they were returning
home that night, the first winter storm cameblowing in. They commented what
great shapethe cattle would be in. Arriving home, the farmer decided to go out
and seehow the cattle were doing in the new barn. Turning on the lights, not
one of the cattle was to be seen.He panicked. Someonehad stolen his cattle!
He ran outside to look for evidence and noticed the cattle standing in the
foundation marks of their old stalls."

As we at NASA dealt with the Challenger (SL-51) accident and the myriad problems

that have occurred in the return to safe flight and ensuing flight program, the goal has been to

birth a new Phoenix bird, to build a new barn that does not disregard the old foundation, but

moves into the new. It is hoped that this report will help in that process by documenting a set

of principles and a synopsis of problems and how they were solved. Interwoven with each is a

personal testimonial and its resurrection which is probably the real story; however, that is left

to others. As stated previously, this report documents a seminar given to several aerospace

companies and three NASA Centers. It also augments two previous reports, TP2508 and
TP2893, which contain some of the same information. In general this report serves as a gen-

eral overview with supporting summary data to the other documents. It deals with problems

covering all major applied mechanics disciplines and also contains a short discussion of the

Challenger accident.

In dealing with problems, one can get the idea that one is negative and pointing fingers

or placing blame. That is not the case. All have performed exceptionally well, producing

unprecedented machines. The purpose in enumerating problems is to learn lessons and

produce better machines in the future.

May this report add a small flicker of light on the path to the future of space.



II. BASIC PRINCIPLES

As stated in the introduction, the study of problems has led to the conclusion that th_
violation of basic principles, not missing technology, is the culprit. The solution of this prob-

lem, of violation of basic principles, determines success. The Challenger accident, its results,

and the attendant return to flight activities were the driving force behind a lessons-learned

report published in January 1989. 4 This report was written as the result of numerous inquiries

as to "What have you learned?" This paper expands the concepts to include the influence of

constraints, schedules, etc., on the design. Saturn, Apollo, Hubble space telescope (HST),

and the space shuttle are used to illustrate the concepts and the derived principles. In gen-

eral, these observations deal with design and verification principles which, if practiced, should

greatly reduce problem occurrence, the thrust of this paper as delineated in figures 1 through

4. Two pivotal concepts are the keys to quality: (1) system focus is one of the foundations of

high quality, and (2) the correlation of hardware sensitivity to the performance requirements.

Twelve principles support these pivotal concepts.

A. System Focus

1. General

What is meant by system focus? is one of the hardest questions to answer in

engineering. Most look at some part of systems and call that the system focus; integration,

etc. First and foremost, it is an attitude, as it is the foundation of TQM. Second, it is the tying

together of large hardware, software, vehicle, facilities, and operational systems into a cohe-

sive bond integrating all disciplines, hardware, software, etc. from determining requirements

and performance to verified operational hardware. Third, it implies teamwork and open com-

munications, which says that all involved must have some knowledge of each system outside

one's own specialty and be willing to communicate and share (fig. 3). It also implies incor-

porating manned rating, when applicable, up front in the design as well as failure mode and

effects analysis (FMEA)/critical items lists (CIL's) to identify and design out failures (fig.

6). What is neglected in design due to a lack of system focus must be accounted for by good

system optimization during operations. It is a pay me now or pay me later condition. This is a

fundamental lesson learned from studying the system focus.

Engineering is a process based on principles of technical disciplines, management, etc.

Its application involves risks. Reduction of risks requires both knowledge of the process and

the inherent subprocesses, the technical disciplines, and the ability to judge merits of each.

The system focus is fundamental to lowering these risks through decision making involving

the system from front to end, concept to operations, and considering total cost. Total cost is,

in all probability, the hardest item to define, certainly it is the hardest to calculate. The great

challenge is how one balances total cost with risks to arrive at an acceptable answer.

Figures 7 and 8 are an attempt to show two approaches to the system focus. The first

is the idea where one iterates using total cost as the criteria to determine drivers (sensitivity

analysis), conducts concept testing, and arrives at robustness criteria that produces a basis
for an optimized system. This must be accomplished in conjunction with the customer and his
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needs.When one talks about total cost, it is all inclusive, including vehicle, facilities, opera-
tions, software, hardware, manpower, transportation, manufacturing, design, and mainte-.
nance. Robustness says that the design is insensitive to variations, environments, manufac-
turing, and other effecting parameters. Also that the design controls them and the margins.

All are part of the optimization. To produce this optimized configuration, several iterations are

required through the total loop (dotted line).

Use of techniques of TQM to transfer the customer's requirements into quality sys-
tems enhances this process. A more detailed look at this process is shown on figure 9. The

first shows it for the major elements of design while the latter shows still more details. The

resulting configuration that is selected and verified then has low operational cost, flexibility

safety, and performance. As was stated in the introduction, however, design is a compromise

which implies some degree of failure. Figure 8 attempts to capture this situation by changing
the contents in the various blocks of the process. Notice that cost is constrained up front as is

size, weight, etc., in an attempt to meet goals from outside, such as those imposed by

Congress. This changes the other blocks limiting sensitivity analysis and concept testing.

These are not new debates or ideas. References 5, 6, and 7 deal with discussions and

debates centering around what has happened in various projects throughout space history,

particularly starting with Apollo. Fundamental to this loop is the correct setting of
requirements, particularly the derived requirements, which now must be set in terms of

constraints; these constraints being in conflict with requirements, objectives, etc. This forces

a compromise in the configuration, as is indicated on figure 8. The design is now a

suboptimized configuration instead of an optimized one with robustness. Once given this

constrained system, one must work within it to produce the best system from requirements to

product using the best tools and skills. This interactive flow between the customer's desires,
design, manufacturing constraints, cost functions, maintenance, and operations, etc.,

determines the design and performance. As illustrated in figure 8, the suboptimal approach

produces a system that in the end does not totally meet the performance goals, is more costly
to operate, and does not have flexibility. In later sections, several space systems will be

evaluated in terms of this principle.

In fact, what was not made robust must be covered in operations by system con-

straints, stringent operational procedures to insure safety. The resulting problems and fail-

ures take many forms, and the consequences are determined by when and how they happen.

For example, proof testing is designed to screen defects; therefore, failure in proof can indi-

cate the test has accomplished its objective or it can be a design deficiency. Repeated proof

failures indicate either a design or manufacturing deficiency. Failures during development can

be corrected, but are costly. Failures alluded to can also result in the excessive maintenance

and refurbishment required for safety on limited lifetime parts. All these mean that
FMEA/CILS's and hazards must be an up-front part of design to help reduce these impacts,

design in redundancy, etc. The following table lists the categories of failures and problems
one needs to understand.

4



Table 1. Classesof problems.

Io Major Failures

a. Design Deficiencies

b. Quality Control/Manufacturing

II. Proof Test Failures

III. Localized Failures (Contained)

IV. Hardware Limitations (Design Deficiencies) DAR's
a. Lifetime

b. Performance Limits

c. Redlines

d. Inspections
e. Refurbishments

f. Special Analysis and Tests

V. Hardware Limitations (Manufacturing, etc., Deficiencies) MRD's
a. Measurements

b. Inspections

c. Analysis and Test
d. DAR's

Comparing the two system approaches means that up front much more analysis, test,

etc., must be accomplished to determine drivers and to select optimized configurations.

Obviously, this is another way of saying what is shown in many TQM courses with the qual-

ity level (fig. 10). Notice the factors on quality payoff versus program phase compared to

recognition. Does this not say that if one wants to advance professionally, he waits until pro-

duction then puts on his thinking cap and solves problems. Somehow this must be turned

around. This is said partly in jest, yet our rewards system greatly favors the Production

Phase problem solving. A companion chart (fig. 11) shows the cost for the two approaches

versus program phases. One can further conclude that most of the requirements become

derived requirements because their origins lie in the conceptual, design, and development

work as modified by imposed constraints. This is due to a general principle which states

"What is done up front in a project--requirements, constraints, etc.---determines, to a large

extent, the quality and performance of the design. What is done in production and operations

tends to be fine tuning of this predetermined configuration and is very costly if robustness is

not present." Figure 6 summarizes this. "Pay me now or pay me later" certainly applies.

Coupled strongly with the system focus is the principle that the higher the per-

formance requirements, the greater the sensitivity of the system, subsystem, or part to

variations in any parameter including manufacturing, environments, etc. This and the other

ungirding principles to the system focus are discussed in later sections.
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2. Project Examples

Three programs of NASA (Saturn, space shuttle, and HST) illustrate how the system

focus functions in real life. The following discussion of Saturn, Apollo, space shuttle, and the

HST is not meant as criticism or that any other path was possible. In fact, it is very probable

that no other option existed at the time; however, when that is the only course, it must be

clearly understood from cause and effect on systems so that the best design possible is

achieved. With the exception of Saturn, these systems have not always met their initial per-
formance goals and were usually more costly than predicted; however, each has been out-

standing performers, indicating excellent engineering and management regardless of the sit-
uation imposed by economics, etc.

a. Saturn/Apollo/Skylab

The Saturn, Apollo, and Skylab vehicles were an evolutionary process that began with

the development of the Saturn I vehicle built from the manufacturing propulsion technologies

of the Redstone and Jupiter systems. Tanks, using Redstone manufacturing, clustered around

a center tank using Jupiter diameters and manufacturing were used with a spider beam at the

top and a thrust frame at the bottom containing a cluster of eight H-1 engines forming the first

stage. The second stage was designated the S-IV. This vehicle, which became the forerunner

of the Saturn 1B, evolved through two block changes during 10 successful flights. The block I

had no aerodynamic fins on the vehicle, and the second stage was not live. Block II had aero-

dynamic fins and a live S-IV stage using a cluster of Pratt and Whitney RL-10 engines with

uprated H-1 engines on the first stage. The propellant tanks were also lengthened. The

instrument unit became a prototype for the Saturn 1B and Saturn V.

The Saturn 1B represented major advancements for the hardware and techniques for
the lunar missions and was the vehicle for launching men for the various Skylab missions.

The vehicle's first stage had a more efficient, lighter weight structure (performance enhance-

ment) as well as further uprating of the H-1 engine. The S-IV stage was powered by a new,

single-stage liquid hydrogen J-2 engine (also used in Saturn V). The vehicle was the

workhorse to wring out the Apollo command module and lunar module in the manned mission

scheduled to be launched on the 51B 204 vehicle. This mission was delayed 1 year to solve

problems associated with the Apollo capsule fire. The Saturn 1B afforded the opportunity to
flight-test important elements of Apollo-Saturn flight hardware as well as operational proce-

dures, etc. It also powered the first manned Apollo mission, Apollo 7, clearing an important

hurdle for Apollo. Figure 12 is a schematic of the Saturn 1B vehicle, while figure 13 gives its

basic characteristics and performance requirements. After the successful Apollo program, it

became the vehicle for launching astronauts to the orbiting Skylab program, completing four
successful missions. This evolutionary development program has much to do with the

successes of Apollo followed by Skylab, and illustrates much of the system focus being dis-
cussed.

The Saturn V vehicle was used to launch both the Apollo lunar missions and the

Skylab mission. Figure 14 shows the Saturn V, while figure 15 compares the Apollo configu-
rations and the Skylab vehicles.

The vehicle was a three-stage, in-line vehicle composed of the S-1C first stage using

a cluster of five F-1 engines burning RP1 developing 1.5 M lb thrust each. The second stage,

S-II, was composed of a cluster of five J-1 engines burning liquid hydrogen, developing
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approximately 230,000 lb of thrust each. The third stage, S-IVB, had a single J-2 engine
burning liquid hydrogen, developing approximately 200,000 lb thrust. For the Apollo mission,
the service module had a single engine for midcoursecorrections, lunar orbit escape,etc., and
was separated from the command module before Earth atmosphere reentry. Figures 16 and
20 show the basic characteristics by stages.The Skylab version replaced the S-IVB stage
with the Skylab space station and eliminated the command and service module being an
unmannedvehicle.

Saturn/Apollo is a mixed bag in terms of total optimization. It, in fact, was not a total
optimized system. It did however, have robustness from most viewpoints. Several books

have been written, covering these design and program evolutions from all aspects--political,

manned operations, design, etc. 5-1o Early on, a lot of analysis and testing was accomplished

which had strong impacts on the success of the program. The program also had problems late

that had to be resolved in a brush firemode; hydrogen engine combustion instability and the

Apollo capsule fire, for example. These are probably typical of what could be expected in a

system pushing state-of-the-art technology. Many would argue that at least the capsule fire

was preventable, which is always the case if one had the knowledge prior to the accident or

problem that is known afterward. Interestingly, the focusing that occurs when solving prob-

lems sharpens and marshals the brain, which intensifies efforts leading to insight and con-
cepts that are not there in potential problem analysis modes. The Saturn Apollo was, how-

ever, robust in most respects.

Robustness is illustrated in terms of structural capability which allowed the Skylab
mission. Figures 21 and 22 show the aerodynamic pressure distribution for Apollo and Skylab

configurations. The Skylab had a forward peaked aero distribution which peaked the bending
moment in the S-VB stage versus the Apollo version which was more averaged (fig. 21 and

22). This resulted in a more in-depth wind biasing and probabilistic (Monte Carlo) assess-

ment using the measure Jimsphere wind ensembles. Figure 23 and 24 show the bending

moment probability for nonwind biasing and wind biasing versus bending moment capability.

By using wind biasing, the vehicle could be brought into an acceptable loads response level°

This was further insured on the day of launch using conditional probability in conjunction with

measured wind data for launch constraints, that precluded launching into an unsafe winds
aloft condition.

The ability to incorporate five engines on S-IC and S-II stages, although not optimum,

further illustrates robustness in both the structural and propulsion systems. As a result, per-

formance flexibility made possible the lunar rover mission, and very likely the lunar orbit ren-

dezvous mode option that was made late in the program. 5

The use of the Saturn I, basically as a development vehicle, and 1B, as not only a

workhorse but as a test bed for Saturn V, was clearly a desired evolutionary approach.
Funds, etc., preclude this in many cases and, therefore, the development risks must be
reduced in other ways.

b. Hubble Space Telescope

The HST is the world's greatest orbiting observatory. Its accuracy and precision are

unprecedented. The pointing accuracy is 0.007 arcsec, which is equivalent to focusing on a

dime from Washington to Boston. The HST (fig. 25) is composed of the outer protective shell

(called the SSM), the momentum wheels that control the vehicle by varying each wheel's
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speed, and the aperture door for blocking direct sunlight from the instruments allowing more
science time. The inner parts are the heart of the optical telescope assembly (OTA) system,
composed of the metering truss mounting, the primary and secondarymirrors, the focal plane
structure, and the aft truss mounting the scientific instrument. To eliminate thermal distortion,
the frames are made of composites with near zeroCT (coefficient of thermal expansion). The
mirrors must be accurately located relative to each other (fig. 26). The light enters striking
the primary mirror, which focuses it on the secondarymirror. The secondarymirror focuses
the light back through a hole in the centerof the primary mirror onto the scientific instruments.
The instruments are: (1) the fine guidance sensor, (2) the faint object spectrograph, (3) the
wide field planetary camera, (4) the photometer, (5) the high resolution spectrograph, and (6)
the faint object camera. They function to perform the fine pointing and to gather various
scientific data from studying the heavens (fig. 27).11Power is provided by solar arrays in
conjunction with storage batteries. The control system uses six rate gyros and the two fine
guidance optical sensorsto provide roll, pitch, and yaw information, and is designed to keep
the observatory accurately locked to within 0.007 arcsec on a subject for extended periods.
This is equivalent to 1.2-cm offset at a distance of 600 mi (1,000 km). Temperatures within
the telescope are controlled actively and passively to assurepointing accuracy and structural
stability.

Not only is the spacecraft itself very complicated, but so is the management and
organization. The scientists gather the data and analyze it while NASA operates the craft.
The scientists work through the space institute, NASA/Marshall Space Flight Center
(MSFC) was responsible for design and deployment, and NASA/Goddard Space Flight
Center (GSFC) was responsible for the scientific instruments and operations. It was a major
effort to balance between the scientists' desires and the engineering
project constraints during design.

The space telescope was fraught with problems early in the program. Budget con-
straints, etc., kept changing the requirements and design. Reference 11 is an excellent disclo-
sure of the telescopedesign, management,and other problems as the project evolved.

Early in the program, as a cost saving, it was decided that the project office would be
the integrator and that, due to the proprietary nature of some of the hardware, all data would
exist only at two or three co-located rooms. Engineers would have to go to those rooms for
information. A tight development cost constraint was also imposed. Military constraints due
to their heavy defense involvement at Perkin Elmer early in the program further constrained
activities. The end result was a lack of systemsfocus. Many other earlier decisions and con-
straints helped shapethe HST and influenced adopting the associatecontractor approach.11
As the program progressed major problems resulted, creating large cost overruns. As a
result, the project had to retreat and form system teams and panels such as control,
dynamics, etc., composedof the membersfrom MSFC, GSFC, Lockheed, Perkin Elmer, etc.,
to solve the problems. In addition, an MSFC project and engineering team was dedicated to
insuring a good system co-located at Lockheed and Perkin Elmer. The team was active for at
least 1 year. The end result was a good, verified system,but with a large cost overrun. Some
of the problems have been discussedin reference 4, the others appear later in this document,
some others were not related to the technical disciplines discussedin this document. Maybe
this says that the time to put teams in place at the contractors is early in the program to fully
ring out requirements and design issues,eliminating downstream problems instead of waiting
until after the problems occur. The problem found in flight of the mirror spherical aberration



hasbeen left to the special investigation team; otherwise the HST has performed in an excel-
lent manner for sucha complex machine.

c. Space Shuttle

The space shuttle vehicle is composed of an expendable external propulsion tank

(liquid oxygen and hydrogen), a reusable orbiter with liquid main propulsion engines (space

shuttle main engines--SSME's), the orbiter maneuvering system (OMS), two solid rocket

boosters (SRB's) (partially reusable), and the various payloads (fig. 28). The payload maxi-

mum size is 15 by 60 ft. The maximum weight depends on the desired orbit. The orbiter has a

stay time on-orbit up to 2 weeks with a crew of up to five. The total weight is approximately

4.5×106 lb as shown on the schematic in figure 29. MSFC has the responsibility for the

development and operation of the external tank (ET), the solid rocket motor (SRM) and

booster, and the main engines. Various Centers have responsibility for different payloads.

MSFC is responsible for the HST, the Spacelab system, etc. Johnson Space Center (JSC) and

Rockwell Space Division are responsible for the orbiter and total vehicle integration.

(1) Characteristics: A typical shuttle mission is shown on figures 30a, b, and c. The

mission starts with the vehicle and payload assembly, then moves to the launch pad via the

mobile launch platform (MLP). The vehicle sits on the pad unfueled until about 10 h prior to

launch, at which time it is fueled. Due to the cryo propellant temperatures, the vehicle

shrinks. The aft SRB-to-ET struts are designed to account for this shrinkage. The weight of

the propellant further loads the vehicle-to-MLP interfaces and the element-to-element inter-

faces. This causes the vehicle SRM's to bow laterally and the total vehicle to bend in the

pitch plane. The cryo shrinkage moves the struts 7 °, putting them perpendicular to the SRB

and ET (designed to account for the movement). This causes a punch load toward the tank

which is counteracted by the radial shrinkage of the tank. This stores energy in the structure

to be released at lift-off (fig. 31 and 32). The SSME's are ignited and must be at 90-percent

power level before igniting the SRM's, which store even more energy in the structure.

In order to reduce these lift-off loads, a trade study of performance versus loads was

made on delaying the SRB ignition until a minimum stored energy point is reached. The

results of this trade came out in favor of the delayed SRM ignition. The dynamics are that the

SSME thrust (force) bends the vehicle and lifts it due to engine cants and asymmetries

pushing the orbiter and tank between the SRB's in a gear train mode (fig. 32), setting up an

oscillation which produces minimum stored energy approximately 6 s after SSME ignition, at

which time the SRM's are ignited (fig. 33). The SRB's obtain above 900 psi internal pressure

stretching the vehicle in a longitudinal transient mode simultaneously with the release of the

stored potential energy. The holddown bolts are blown and the aft skirts released from the
pad. Large vehicle dynamic motions result.

Figures 34a and b show a time trace of a strut load during these events. As the

vehicle clears the tower, it is rolled up to 180 ° (mission dependent) to put the orbiter down,

which produces a more optimal total thrust angle. At 20-s flight time, the vehicle performance

is assessed (velocity). If performance is low, the main engines are not throttled as deeply

(adaptive guidance) as planned to make up the performance. If the performance is nominal,

preprogrammed throttling occurs. If performance is high, deeper throttling occurs if possible
(engines can only throttle to 65 percent). Engines are throttled to keep the dynamic pressure

within design limits as the vehicle traverses through the maximum dynamic pressure regime,
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als0, during the time of high winds. Pitch, yaw, and elevon load relief are usedto reduce aero-
dynamic loads at the expenseof performance. This also introduces high thermal loads after _
max q when the vehicle is moving back to its optimum path (large side-slip angles intro-
duced).

The events just discussedrepresentsome of the major tradesmade during the shuttle
design phases. Loads versus performance losses being the key. The option was to beef up
the structure to handle loads (performance loss) or deviate time and trajectory path and
reduce loads (performance loss and loss of launch probability). The trade, in general, came
out to take the deviations and not beef up the structure° In some specific casesstructure was
beefed up. Meeting requirements is always a trade and never comes for free.

The next event is SRB separation. This is a dynamic event triggered when the SRM
thrust drops below a certain level. The event is dynamic with firing of pyrotechnics to sepa-
rate the interfaces and separation motors to move the SRB's away from the tank/orbiter. Two
parallel events follow. The orbiter/ET continues to thrust to gain orbit while the SRB's
reenter the atmosphere, opening the parachute in stages to reduce loads, then water impact
creating large loads. After being towed back to Kennedy SpaceCenter (KSC), the SRB's are
refurbished for reuse. The orbiter/tanks next main event is the tank separation and disposal
(breaks up on reentering the atmosphere).The resulting debris footprint is critical and must
be controlled. The orbiter then fires its OMS engines to achieve the final desired orbit. After
completing its mission, the orbiter reentersby firing the OMS engines, slowing the vehicle,
then it reenters the atmosphere and lands. All of these are very fine-tuned and critical
events. The reentry drives the thermal protection system design which is very critical to sur-
vival. The on-orbit phaseis unique for each mission. One additional complication occurs dur-
ing the ascent phase--abort options (fig. 35). Early in the mission engine failures mean
ditching. Next comes return to launch site (RTLS), a very critical maneuver.Later in time the
vehicle can abort to alternate launch sites, then comes abort to orbit (once around in a
degradedorbit). Then finally, the desiredmission orbit is achievedby firing the OMS engines.

A complex launch constraint system is in place to ensure that the vehicle is not
launched in unsafe conditions. Part of this program involves taking winds aloft wind samples
and calculating structural loads and performancemargins. Approximately 2 h prior to launch, a
choice is made between several I-loads (trajectory shape to reduce loads and increase per-
formance margins). At 30 min, a decision is maderelative to launch whether to launch or not
basedon this data. In the last part of the sequenceprior to launch, all systems are monitored.
A launch can be stoppedif any systemis out of specification. Most of theseredline cutoffs are
automatic.

(2) Design Evolution: The questions that must be addressed are how did the shuttle

evolve? and what major decisions shaped it into one of the world's most impressive systems?

It is very complex, in most respects, being resuable, operating during launch, on orbit, reentry_

and landing. Blending all these requirements into one machine was a great challenge. Initially

(phases A and B), extensive sensitivity analyses were accomplished in several areas:

propulsion systems (high performance engines), reentry heat protection, and applied

mechanics. These early trades and sensitivity studies were accomplished to focus require-

ments and design. The key sensitivities identified have guided not only the design, but the

guide flight operations. Figure 36 shows the key system issues identified which includes tra-

jectory (performance), loads, and control coupling, as well as control concepts and control

authority issues. Figure 37 illustrates this performance control coupling showing the high
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sensitivity of performance to the control concept chosen, as well as the trajectory shaping
philosophy. Figure 38 illustrates the increaseddynamic complexity over the Saturn V vehicle.

With the advent of the parallel burn solid configuration, the complexity increases fur-
ther, requiring 200 to 300 modes to represent the vehicle and payload combination at pre-lift-
off and lift-off. Figure 39 illustrates the problems associatedwith lift-off and the unsymmetri-
cal configuration, while figure 40 shows how this unsymmetry couples up the POGO oscilla-
tion (longitudinal vehicle oscillation with the analogy of the pogo stick providing the name).
As shown in the chart, this coupling was experienced on Saturn Apollo with only a small
unsymmetry in the lunar excursion model (LEM) illustrating the power of dynamic coupling.

The evolution of the space shuttle is shown in figures 41a, b, and c. Initially, the
shuttle was totally reusable with a flyback booster. The engines were liquid using the same
powerhead, but optimized nozzles for the booster and orbiter stages.The cost was estimated
to be $14 billion for design, development, test, and engineering (DDT&E), based on
estimated weight. The orbiter had ferrying capability and met all cross-range requirements.
The payload size was constrained to the Air Force requirements of 15 by 60 ft. Due to
national priorities, the funding was cut. An exercisewas conducted during phaseB to change
the configuration to one that had parallel burn between the boosters and the orbiter stage.
The booster options were liquids or solids. Finally, the cost (DDT&E) was frozen at the $5.5
billion level and the solid booster configuration was selected. This meant that the engine
nozzle could no longer be optimum since it had to start and operate in atmosphereand then
operate in vacuum. This led to a requirement for the 470,000-1b vac thrust with an Isp of
453 s. The orbiter self-contained ferrying requirement was eliminated, driving the system to
the Boeing 747 ferry mode. the cross-rangerequirement from the Air Force remained, leading
to the modified delta wing. Passivetiles for reentry thermal protection were chosen.

The next step, in conjunction with the dollar constraint, was to place weight con-
straints on the total system gross lift-off weight (GLOW) and each of the main vehicle ele-
ments. This drove volumetric constraints along with the payload volume of 15 by 60 ft. As
the vehicle evolved, the orbiter had problems meeting its constraint. The passive tile selec-
tion possibly had some weight impact also, the silicon-based tiles are very sensitive to
impact damage. This fosters a very elaborate program to eliminate ice and debris that could
impact tiles and lead to a safety problem. Damageoccurs on every flight but none to a safety
concern. Damaged tiles had to be replaced.Each tile is hand fitted and installed. It is a well-
known fact that the orbiter brake design was marginal prior to Challenger. This was fixed

while the program was down during redesign of the SRM's.

Constraints/requirements drove several things. First, the SSME had been configured

to throttle from 50 to 109 percent of rated power level (RPL) with all above 100 percent being

used for abort purposes. The system changed the engine design requirements to operate at

109 percent to increase performance and throttle to only 65 percent for dynamic pressure and

acceleration control. The original SSME design was for a 100-mission lifetime. It was decided

that by reducing the requirements to 55 missions, the lifetime of the engine could be met with

the same basic design as for the 100 percent. This assumption did not hold up. Second, each

element was asked to do a weight reduction program to make up the performance. This task

was accomplished by all elements taking out margins. The ET accomplished part of this task

by reducing the safety factor on all well-known loads from 1.4 to 1.25 since the tank was now

expendable. Third, the performance of the SRM was increased to up performance, and the
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thrust profile shape was modified to meet q constraints. The dynamic pressure "q" on the
orbiter wing and tail during ascent greatly complicates the system. The large aerodynamic
surfaces create large structural loads and trajectory deviations (drift). Vehicle control, per-
formance, and loads are further complicated by the unsymmetrical configuration, both
dynamically and statically. The maximum coupling (dynamic pressure) occurs at the altitude
of peak winds. Figure 42 shows these major events and the phasing required to achieve
successful flights in terms of loads, control, thermal, and performance.

The original SRB's had no control capability. Early in the designphaseit becameclear
that the shuttle system was uncontrollable without control authority on the SRB's. As a
result, the SRM nozzle flex bearing, composed of layers of metal and elastomer, was
designed and baselined. Actuators designed for the orbiter were used as actuation authority.
This increased weight, complexity, and cost. In addition, two factors were used very early in
phase C to take out conservatism, save weight and cost, and improve performance: (1)
monthly mean wind biasing was instituted early in phaseC aspart of criteria change for gen-
erating environments and performance, etc. (past programs had held that as a margin for
operation and launch probability increases);and (2) prior programs used the 95-percent wind
speed in conjunction with 99 percent wind shear and 99-percent gust as a conditional prob-
ability approach. The spaceshuttle used 95-percentwind speedin combination with one half
the shear and gust 99-percent levels, then root sum squaring the other half with the other
parameters, again reducing margins. These two conservatisms are not wrong within them-
selves since it could be shown statistically that thesewere safe approaches.What it did do
was take out margins for flexibility, operations, and missed effects. No one, for example,
expected the wing aero distribution to be missed significantly. Due to these constraints the
above response and certain anomalies such as the aerodynamic pressure distribution on the
orbiter wing, the spaceshuttle is very costly operationally.

Each mission has to be specially shaped.To fly safely a performance loss near 4,000
lb is incurred. In addition, a very elaborate wind monitoring, day of launch performance, load
activity, and day of launch I load update is mandatory to ensuresafety. It is very costly. The
vehicle, in winter months only, has a 65-percent launch probability. To date three launches
have been scrubbed for high winds. The SRB aft skirt has low margins and ground wind
constraints. The SSME, although a very high performance machine, is very costly to insure
safety through part changeout, limited lifetime, and hardware rejection. It is also restricted to
104-percent power except for abort. As shown on the chart, massive redesign has taken
place, orbiter landing gear, SSME two-duct hot gas manifold, weld elimination, pump
changes, nozzle steerhorn, redesigned solid rocket motor (RSRM) aft skirt, etc. The
advanced solid rocket motor (ASRM) is under consideration or in progress with approxi-
mately 12,000 lb performance improvements, alternatehigh pressureturbopumps, large throat
main combustion chamber (MCC), MCC casting, and weld eliminations. Orbiter tile damage
and refurbishment are continuing costs. This discussion has shown how the constraints, in
conjunction with requirements led to a high performancebut costly operational system, which
demonstrated the correlation betweenhigh performanceand cost.

The discussion that follows addressesseveral of the specific shuttle problems, as well
aspresentsa brief look at the Challenger accident cause.

(3) MLP/SRB Aft Skirt/Puck Rotation: Reference 4 addressed very briefly the failure

of the SRB aft skirt during filament wound case verification testing and STS-26 reverification
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testing. Two failures occurred at the same location. The failure was the result of not under-

standing the sensitivity of the stress in the forging (holddown post) to skirt skin weld to

radial loads. Figure 43 shows this sensitivity which was found in a posttest correlation

analysis. The total skirt load, mainly compression on one side and tension on the other, was
well understood. This load was critical to the holddown post and was studied extensively

both for the eastern and western test ranges (different launch pad designs). What was

missed was the radial load sensitivity which is a function of pad stiffness, etc., and was found

in designing and analyzing loads for the western test range launch pad. As a result, new

loads were generated. Although the total load was basically the same, the radial load

changed which resulted in the failure of the filament wound case test skirt. New loads were

generated for the eastern test range producing different radial loads. This effect can be seen

on figure 44 where the radial load pushes the post outward bending the skirt at the weld, thus

producing very large local stresses at the weld outer surface. This is a combined bend-

"ing/shear load. Figures 45 and 46 show the stress distribution on the surface and through the

thickness. Notice the local nature both through the skin and surface wise. A special failure

team was formed to investigate the failure cause. Special consultants were used to evaluate

the NASAJUSBI team. It was found that the problem was very nonlinear. No finite element

model, in conjunction with extensive material testing, adequately predicted the failure.

Nonlinear, theoretical, and simplified analysis 12 13 have indicated an explanation. What did all

this mean? The skirt failed at a safety factor around 1.3 with a design/operational requirement

of 1.4. Flight, therefore, must be on the basis of a waiver, or stop the program and redesign.

Flying with a waiver as chosen in conjunction with several activities:

a. Very extensive testing of the MLP to accurately define a new model for loads
calculation.

b. Loads were recalculated using this refined model.

Co Strain gauges are grouped in the failure area to correlate loads predictions--this

was used for STS-26 flight readiness firing (FRF) and all subsequent flights--showing the

safety factor was not deteriorated with the stack. All flights showed the same general
results.

d. These same strain gauges are used to correlate analysis during stacking of the

SRB and vehicle. Safety factors are calculated for each flight based on this data, and some

improvement in margins has occurred.

e. The puck on the post can be rotated biasing the skirt, producing larger margins; this

has been demonstrated and used in flight. Special tests are underway to determine the

sensitivity and limits of this biasing. It may be possible to get the safety factor back to 1.4 in
this manner.

f. Design analysis and test are progressing to define an alternate configuration which

will restore margins, etc.

The message is clear. Sensitivities must be understood and used to define all

environments (loads in this case) or costly operational procedures, and analysis must be

performed on a flight-by-flight basis.
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(4) Debris Damage to Orbiter Heat Protection Tile: The reentry heat protection tiles

have suffered damage on each flight. The major damage has occurred both at lift-off or ascent

and orbiter landing. The landing damage is only a refurbishment/cost issue while the ascent

damage can become a safety issue. Major emphasis has been placed on these events to

eliminate debris sources. Some of the potential debris sources are (1) ET insulation, (2) ice

buildup on the ET, (3) SRB nose cone insulation, and (4) pad debris blown up by SRB, thrust,
etc. Extensive effort has been made to insure that insulation does not come loose. Included

are bonding changes, insulation changes, pull test and repairs, pad cleanup prior to launch,

etc. Prior to each flight, an ice team inspects to see if dangerous ice has been formed by the
cryogenic propellants. A team inspects and maps each orbiter after landing to help determine

sources. Special cameras are employed on some flights for the same reason. Clearly, the

orbiter passive thermal tiles do an outstanding job; however, special care is required through

the total system to insure safety of flight. System analysis and requirements must be under

constant review with all changes evaluated against these considerations.

(5) 51-L (Challenger) Accident: Before discussing the accident itself, it seems

prudent to discuss some philosophy and approaches for design and failure investigations. It is

a basic philosophy that all systems be modeled, analyzed, and tested to get data, then test

verified, plus hot-fire and flight instrumentation for insurance and final verification. The space

shuttle followed this philosophy using numerous avionics, dynamic, structure, wind tunnel,

etc., tests, including the ALT program (orbit drop test). To verify the system, the first six

flights were designated as development flights. Special instrumentation flew on these flights

to gather information and verify the system. Several flights after the Challenger accident also

flew special instrumentation. The design of a vehicle dictates that every event, from trans-

portation through each flight phase, be fully analyzed and sensitivity studies conducted with

key design data by event for each element, part, etc., developed. In general, during design

and/or failure investigations, all events are analyzed to determine the key event for that part.

The data that are presented then become the design data for that part, for that design event,

and not the total vehicle or for other events. For example: the bending moment and shear for

each SRR/SRM station is for the worse case event for that element and that station or part.

The Challenger investigation followed that procedure in that most of the data are for the failed

SRB, its failed joint, and its corresponding ET to SRB struts loads, although all the data for
all events were analyzed.

The Challenger accident was the major disaster of the space shuttle program. Lives

were lost, a vehicle was lost, and the space program was shut down for several years,

greatly hampering military operations as well as science and engineering research. The dis-

cussion that follows could be under SRM; however, the final result was a total system failure.

No attempt is made to alter the Presidential Commission report, which is the basic reference

document, but rather to provide a synopsis on the effort and the technical results. It is a part
of this report due to its importance and impact to the space program.

The primary failure was the SRM o-ring leaking the internal hot combustion gas to the

outside through the first field joint in the direction of the SRB/ET attach point on the ET. All
subsequent events and failures, including loss of the vehicle, were the result of this leak.

Many other theories were advanced to explain the leak and/or the vehicle failure other than

that concluded by the Commission; however, all were studied and ruled out by the

Commission. These potential causes included (1) extremely high lift-off loads, (2) excessive

winds aloft, (3) inappropriate assembly, etc. The breakdown in the system, whether NASA
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management, Congress, etc., that led to a faulty o-ring system is not discussed, only the
technical cause and effect of the design on the failure. First, the o-ring field joint
characteristics, including failure, are addressedfollowed by a discussion of why the other
causescould, with high probability, be ruled out.

The field joint o-ring configuration is basic in concept but complex in characteristics.
Figure 47 shows the field joint o-ring as part of the two aft SRM segments and as a cross
section of the two mating areas,the tongue and clevis. At ignition, the SRM becomesa pres-
sure vessel due to the expanding burning propellants,reaching over 900 psi in around 600 ms.
This large pressure has two effects: (1) the SRB case expands longitudinally, and (2) the
case expands radially from the large pressure induced hoop stress. Due to the tang clevis
configuration and the fasteners (pins) which lock the two segments together, these two
effects cause a rotation between the tang and clevis at the o-ring location opening up the joint
o-ring area.

Initially, this phenomenonis transient in nature with the gap opening going from neu-
tral to near maximum in 600 ms as the pressurerises. The gap opening then basically tracks
the SRM internal pressure.Primarily the o-ring resiliency should energize the o-ring (initially
compress at the neutral position) and track the opening gap. Secondly, under most conditions,
the SRM pressure will further pressureactuate the o-ring providing a seal between the two
surfaces. If the seal does not actuate, then hot gas under high pressure escapesto the out-
side, destroying the seal. Other influences on the gap opening are the structural dynamic case
response to vehicle dynamics and SRB-to-ET strut loads. Detailed finite element analyses
correlated by test data were conducted in conjunction with lift-off and ascent response and
loads analyses to determine the gap opening and the seal ability to track this opening. The
lift-off and ascent analyses were a total dynamic shuttle systems simulation using several
hundred dynamic modes and 3-sigma combinationsof all environments.

Figure 48 shows the resulting total gap opening during the time span of SSME igni-
tion, SSME thrust buildup (first 6 and one-half s), SRM ignition (600 ms), and lift-off
dynamics (approximately 3 s). Two extreme conditions are shown: (1) where the tang and
clevis are initially metal-to-metal, zero gap time zero, and (2) maximum allowed clearance is
present (20 to 25 mils gap, zero time). Notice that at maximum SSME thrust-induced bend-
ing moment the gap opening delta is around 2 mils. At SRM ignition, 6.6 s, the gap opening
delta diverges very fast. At maximum lift-off dynamics, there is superimposed on the pres-
suregap opening a dynamic effect from strut loads and bending (around 2 Hz). The split of the
gap opening causes are: 85 percent due to pressure,7 percent due to strut loads, 7 percent
due to bending, and 1 percent due to shear.Theseeffects are basedon 3-sigma design loads.
The o-ring clearly could not track the gap opening with a cold o-ring, as was the case on
51-L, without pressure assist. Scale-model and full-scale tests, in conjunction with detailed
instrumentation, have verified these effects on gap opening and o-ring resiliency (ability to
track) as a function of temperature.One additional effect cankeep the o-ring from tracking. If
the clevis tang is near metal-to-metal in conjunction with o-ring and groove tolerances that
cause the o-ring to totally fill the groove, then the pressure cannot actuate the seal, but
instead will hold it in the groove (figs. 49 and 50). This was a strong potential for the failed
joint based on tolerance data stacking data. Scale-model and full-scale test, in conjunction
with detailed instrumentation, have verified these effects on gap opening and the o-ring
resiliency (ability to track) as a function of temperature.

15



The above scenarioexplains the leaks (puffs of smoke)coming out of the aft field joint
during lift-off. Why it sealed until max q is not well understood. Scale model tests showed
leaks that sealed, probably with residuals from burning propellant, then reopenedlater. Also,
why the joint (leak) reopenedcannot be proven. As is shown in figure 51, the joint opens to
its maximum early in flight, then closesdown to about 80 percent of this maximum during max
q due to reduced thrust and internal pressurethat was implemented early in design to, control
maximum dynamic pressure. Around 60 s the SRM pressure and thrust start rising again,
opening the gap further. Residuals plugging the hole could have beencrushed during this gap
closing and become susceptible to dynamic effects (wind gust), combustion noise, or the
slowly increasing internal pressure-induced gap opening. Internal SRM pressure, vehicle
state (aero changes from leak plume, etc.) movies show the leak reopened at this time, con-
tinuously increasing in size until the vehicle failed. The internal pressure loss corresponds to
the increasing plume (leak) observed.

The obvious question follows: How can the other proposed causes such as excessive
loads, particularly from the strut, be ruled out? To answerthe question it is best to split it into
two parts: (1) pre-lift-off through the lift-off transient, and (2) post-lift-off transient through
maximum dynamic pressure.

(a) Pre-Lift-off Through Lift-off Transient: This event starts with vehicle stacking,
transportation to the pad, fueling, start, and lift-off. The vehicle weight by elements is known.
The mating is accurately controlled. The SRB's are shimmed to get uniform post loads and
alignment. All these data are checked and recorded. Propellant loading is accurately moni-
tored. Much data are recorded from strain gauges on the MLP side of the SRB holddown
posts (milk stool), including camera coverage from several angles, showing SSME and SRB
thrusts, temperatures, wind speeds,control data including rates, accelerations, actuators, and
vehicle (SRB and ET) nose tip excursions, etc. The amount of energy stored in the vehicle
from (a) weight, (b) cryo shrinkage, (c) winds, (d) thrust, etc., is well-known. Events timing
is accurate. Using these data, loads, etc., can accurately be reconstructed. Figure 52a shows
the vehicle on the pad showing peak load and bending moment for one SRB. This bending
moment is the peak bending moment, commonly called quasi-static or static equivalent,
determined using a detailed dynamic transient simulation (300 dynamic modes). This
eliminates the need to calculate a static load, then put the conservative factor at 2 to cover
dynamic effects. This later simplified approach is only recommendedfor simple systems. In
complex systems like the shuttle it is a requirement that an all-up transient analysis be
accomplished, eliminating the need for the approximate approach. Figure 52b shows a time
trace through lift-off of bending moment and axial load. How can we know that? Six out of the
first seven flights and all flights since Challenger (51-L) have skirt, strut, etc., loads

accurately measured with strain gauge and accelerometers. Using the data mentioned above,
the load events were reconstructed and correlated to the measure data (figs. 53 through 57).

Accuracy has been very good. In addition, the design loads, particularly for the SRB, were

generated for SRB ignition with maximum base bending moment instead of the near nominal

measured on all flights. It also precluded a pad abort with the loads cycle repeated several

times. Also, the dynamic model for loads was verified in a full-scale mated-vehicle test. All

stress margins were verified by ultimate load test, element by element, for design loads.

All design lift-off loads have been generated using a 2-sigma worst-on-worst

parameter variation approach which indicates that the nominal strut load expected should be
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around 60 percent of the design load. Reconstructionof 51-L loads showed this to be the case
(see Presidential Commission report). Also, remember that the design strut load added only
7 percent to the total gap opening (fig. 58). In other words, for 51-L MLP post loads, SRB
and ET tip deflections, propulsion system thrust, etc., were all near nominal. Only the
ambient temperature was low. In addition, full-scale SRM segments were tested with and
without strut loads in conjunction with numerous o-ring/temperature tests, etc. that fully
verified the analytical model. Prior to STS-26, a full-scale hot-firing of the redesigned SRM
was conducted with maximum expected strut loads. Special instrumentation was used to
measure various effects. This was the final verification of the analytical models and the
worthiness of the redesignedmotor for flight.

. (b) Post-Lift-Off Through Max Q: Actually, for this areamore data are available for
reconstruction than for lift-off from the dynamics and loads standpoint. Again, six of the first
seven flights, plus flights since 51-L, have measuredloads data to verify the reconstruction
process.The measureddata for this flight regime include the vehicle position at all times from
radar tracking and from the onboard guidance system(position, velocities, and accelerations).
Control data gave the instantaneous vehicle angular and lateral positions, velocities, and
accelerations along with the thrust control system responses.Propulsion system data include
pressure, thrust, temperature, etc. Wind data are obtained prior to flight and 15 min after
flight. The vehicle respondsvery quickly to all wind shearsand gusts and is reflected accu-
rately in the control system/vehicle response data. The process of reconstruction is well
established starting with Saturn and other programs. First, the trajectory is reconstructed
from the radar tracking and onboard guidance (data best estimated trajectory) (BET). This
reference trajectory (BET) becomesthe basefor all other reconstruction. The next step takes
all propulsion system, mass (weight), etc., data and reconstructs a trajectory to match the
BET. This reconstructed trajectory is the basefor control, loads, thermal, etc., reconstruction
analysis. Next, the wind speed, shear, and gust profile is estimated from the measuredwind
data taken prior to and after flight. These data, in conjunction with the propulsion, weight,
etc., data from the reconstructed trajectory, are used to perform the control system/vehicle
response reconstruction. These data are correlated directly to the telemetered control system
data mentioned earlier. Loads suchas strut load can be directly calculated from these data.

Figures 59a and 59b are examplesof how well loads were correlated on STS flight 6.
These samereconstructed data for the 51-L flight showed that although the winds were high,
less than 60 percent of the design wind shears and gusts were experienced. Also, because

loads are generated using 3-sigma parameter variations, loads were well below design

levels; therefore, they would not be a primary cause of the failure. The 51-L failure was

caused by the faulty SRM joint/o-ring which, through the impinging leaking gas, caused the

vehicle failure. Photographic coverage of the flight clearly showed the leaking gas. The failure
of the SRM internal pressure to rise back after max q correlated to the observed leaking

plume size. Reconstructed aerodynamic shifts were required for this effect to match the con-

trol response. See the Presidential Commission report for details of this reconstruction.

Technically the basic message is that one must read what development and

operational hardware is telling you. It has the answers. Also, one must understand clearly all

the phenomena and sensitivities of the system. To understand a failure, ruling out potential

causes is just as important as finding the real cause. System data are very important in all

these cases and are the backbone of design as well as failure investigation.
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The next section addressesthe resulting loads characteristics of the space shuttle and
the system implications.

(6) Loads: References 4 and 14 give examples of shuttle loads for both lift-off and

max q. The sensitivity of loads due to the large energy stored and the complex static and

dynamic configuration were alluded to. One important item was not discussed, namely design

factors, etc. Looking at the system, it is easy to see that 1 lb of ET or orbiter weight savings

is equivalent to 1 lb of performance increase. On a vehicle that is performance critical, loads,
thermal, and other environments must be very accurately determined. Conversely, a decrease

of 10 lb of SRB/SRM weight is equivalent to 1 lb of performance increase. Therefore, it was

decided early that the SRB/SRM design environments would be maximum/minimum to build
in robustness and eliminate redesign as environments change downstream. The tank and

orbiter, however, used 3-sigma time consistent loads to save weight. The tank loads that

were well defined had only a 1.25 safety factor applied to the limit load to provide a safety

factor versus the 1.4 normally used. As a result, as loads and other environments evolved,

the SRB/SRM design did not require change. Design changes had to be made to ET for these

same loads. This is a good example of using system analysis and proper cost guides to set

the best design. Many other system loads problems, such as aeroelastic effects, both static

and dynamic, have been studied and incorporated into the design. No known problems have
occurred in these areas.

(7) Loads, Control, Thermal Interaction: It was alluded to earlier that the original

shuttle parallel burn configuration had no control authority on the SRB's. In fact, this control

was not baselined until early phase C. The shuttle vehicle is aerodynamically stable, hence, it

naturally turns into the wind and drifts. Also, the large aerodynamic forces would introduce

drift, thus, performance loss. This meant that classical trajectory optimization could not be

used, but must include moment balanced (control and aero) simulations. In addition, it was

found that although the vehicle was aerodynamically stable, it could not turn into the shears

and gusts fast enough to reduce loads, hence, load relief control was required. This derived

requirement indicated that more control authority was needed to handle this problem; for

example, using the orbiter's elevon and/or a trim system on the SRB's. The problem was

compounded by the unsymmetrical configuration which caused the vehicle to roll. Many

argued that one should "let it roll" during atmospheric flight; however, adding the effects

together produced large performance losses and increasing loads.

During this timeframe, historical data from the then in-use solid programs would only

produce a thrust vector nominal alignment within a 1° circle per SRB. Looking at the total

configuration with the large moment arms of the SRM thrust, neither the orbiter elevons nor

the SSME's gimbaling authority could take out this SRM thrust misalignment effects on the

control and trajectory shaping. 15 Figure 60 shows this effect. Obviously, the best place to

counteract the thrust misalignment effects was at the source--gimbal the SRM nozzle or go

to secondary injection. It was decided to gimbal the SRM nozzles.

An additional driver to the requirement for SRM gimbaling was the SRM thrust tail-off

regime. Here the thrust unbalance between the parallel SRM's creates torques that must be

controlled out. Neither the SSME nor elevon control could do the job ("q" too low for

elevons).
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Since performance was becoming a problem, weight reductions were in vogue for all
shuttle elements. It was found that some performance could be gained by rolling the vehicle
and putting the orbiter underneath the system which allowed the SSME side thrust
(introduced cant angle required to track the center of gravity (C.G.)) to counteract gravity.
The SRM gimbal capability allowed this option to be taken. At 20 s into flight, the shuttle
was rolled to place the orbiter underneath the stack. Now then the vehicle had the authority
to control it throughout flight. Load relief could be beefedup. None of this comeswithout cost.
Controlling the vehicle and adding the load relief control options produced large drifts. Once
out of the high dynamic pressure regions, the vehicle could be controlled back toward the
optimum path. This introduced large angles-of-attack and side-slip which introduced large
thermal loads. In the end, the system had to balance between theseconflicting requirements.
The system flies with pitch and yaw accelerometer load relief gains, rolls the vehicle to
minimize loads, and has elevon load relief to reduceorbiter loads.

(8) Aerodynamic Wing Load/Performance: As mentioned earlier, the prediction of the

aerodynamic distribution and vehicle movement for the orbiter wing was missed due to

improper SRB and SSME plume simulations for wind tunnel testing. This simulation had to be
accomplished by developing equivalent cases which represent the airflow influence of SRB

and engine plumes. This was not easily accomplished since accurate prediction tools were not

available. This caused the STS-1 vehicle to loft higher than predicted. Measured strain data

on several flights, additional wind tunnel testing, and analysis showed the wing loads to be

higher than predicted. Since the trajectory (performance), loads, control, launch probability,

and dynamic pressure are strongly coupled for this unsymmetrical vehicle with large aero-

dynamic forces, how to handle this problem was not easy. Figure 61 illustrates this coupling

and where the vehicle must fly if the wing was not fixed. Three options were open (1) fix the

orbiter wing (structurally beef up), (2) constrain the flights to specific winds (lower launch

probability), or (3) fly off-nominal trajectories to reduce the load (performance less). In the

end, all three options were used to various degrees. The orbiter wing leading edge was

beefed up to allow more negative angle of attack. The trajectory was reshaped at about

5,000-1b performance loss to reduce dynamic pressure and loads. (Dynamic pressure limits

are also imposed from flutter and buffet.) The flights are constrained to certain wind condi-

tions using day of launch wind monitoring and day of launch I load updates. Figure 62 illus-

trates the characteristics of the wing load versus angle of attack and the trades required to fly

the more negative angle of attack.

Figure 63 shows the q envelope versus Mach number designed to (solid lines) and

one set of limits imposed from the change zero data base. Limits are still evolving as more

flight data are obtained. Where a -2 ° tilt trajectory was optimum, the trajectory is currently

changed to fly around-6 ° creating the approximately 5,000-1b performance loss. Coupled with

that is a reduced launch probability to around 70 percent for the windiest month.

Operationally, each launch has to have a special trajectory and loads analysis coupled with a

detailed day of launch constraint program, procedures, and criteria.

(9) Overpressure: Shuttle overpressure was treated extensively in reference 16.

Overpressure is a pressure wave engulfing the vehicle, caused by the very fast SRB thrust

build up, compressing the entrapped air in the flame trenches. Figure 64 illustrates this

phenomenon. STS-1 experienced large overpressure loads at lift-off, exciting the vehicle

structural dynamic modes to near a dangerous level. Fortunately, during shuttle phase A and

B studies, a 6.4 percent propulsive model was built to evaluate acoustical characteristics.
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This model served as a test bed to understand,design, and verify a fix for the overpressure
problem. Figure 65 is a picture of this propulsive model and the launch pad. Through approxi-
mately 50 scaled hot fire tests a fix was developed. It consisted of spraying water into the

SSME and SRB plumes through modification of the acoustic suppression water flow, plus a

series of water troughs installed to block residual waves not suppressed by the ingested

water (fig. 66). It is still debatable whether the troughs are required; however, the cost is
minimal for the added insurance.

Clearly the problem has been fixed. Figure 67 shows the STS-1 overpressure valves
before the fix and the data measured since the fix.

(10) Acoustics: Since the payload (piggyback configuration) is near the noise source

(SRB and SSME thrust exit), noise reduction had to be employed to keep payload bay

acoustics at an acceptable level. This was the reason for developing the 6.4 percent propul-

sion and launch pad model. Through numerous tests, a water suppression system was

designed and verified to handle the acoustic problem. Figure 68 shows the effect for the

SSME-only burning. Figure 69 shows the overall sound pressure level reduction as a function

of water injection. Through this extensive program during the technology and design phase,

the acoustics were controlled which allows efficient payload designs.

(11) SRB Holddown Bolt Hangup Versus Debris: Early in the shuttle flight program,

it was observed (film coverage) that occasionally an SRB holddown bolt would hang up and

scar the bolt hole in the aft skirt as the vehicle lifted off the launch pad. The design is such

that the holddown bolt secures the vehicle to the pad until launch. At SRB ignition, two

pyrotechnics units fire, fracturing the nut that holds the skirt to the pad through the bolt. The

bolt is designed and pretensioned so that the bolt moves away (assisted by gravity). There

is a cover over the explosive nut to catch debris. Figure 70 shows the original configuration.

As a result of the bolt hangup observations, a detailed study was made as to the cause and

effect. Lift-off simulations showed that no lift-off problems would occur due to hangup. The

cause of the hangup was due to the timing differences between the redundant pyrotechnics.

Work was accomplished to reduce this timing difference thus reducing the possibility of
hangup.

As the program progressed and orbiter tile damage became a larger problem, a con-

cern was raised that the nut fragments could be coming out the bolt hole causing debris. The

system was redesigned to control the debris but induced more bolt hangup, due to the attach

linkage of the spring to the holddown bolt. This had to be redesigned to solve this problem, as

shown in figure 71 and 72. Those design changes have basically eliminated the debris and the
bolt hangup concern.

d. Saturn I

In section VI, the complexity of dynamic characteristics of the Saturn I vehicle and its

•c°upling with the control system are discussed. That discussion will not be repeated here.

There are, however, technical messages to be drawn: (1) boundary conditions and the ability

to quantify them are key to test verification, and (2) analysis, data, testing, etc., are only
valid within the assumptions used. Stretching the limits, in general, leads to errors.
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3o System Conclusion

Suboptimization versus system optimization (total cost), in general, is costly. The

space shuttle, although an outstanding vehicle, is costly to operate because of these induced

problems. Many other examples can be cited for other systems, as well as things as simple

as running tests without instrumentation just to make a milestone. The message is always

the same regardless of the project, activity, etc. Deal with total cost to make decisions, even

if it can only be done by judgment. For example, the decision to conduct the all-up mated
shuttle dynamic test was made in this judgmental manner using trend charts. Dynamic

characteristics were required for control system design, POGO suppression design, flutter

avoidance, and loads. Partial dynamic model verification could be accomplished using scale

model and element tests for the final verification with an all-up full scale. Figure 73 shows a

relative ranking of what each test would buy in lower risks. This assessment showed that the

driver for mated vertical ground vibration test (MVGVT) was the data for control system

design. The trade was clear: one could get accurate dynamic data and design a simple robust

control system, or one could have less accurate structural dynamic data in conjunction with a

complex adaptive control system (fig. 74). Load relief was a part of this trade. The decision

was clear, even without precise cost data, that it was better to conduct the dynamic test and

use the simple robust control system. Figure 41 was an attempt to show the above described

shuttle evolution in requirements and design and the resulting operational system. Although

the system is excellent, the cost, etc., is much higher than predicted, basically due to con-

straints and outside requirements. This means that for future systems, the total cost function

must be used in conjunction with up-front analysis and testing to identify key parameters and

their sensitivities coupled with constant review of requirements and performance, particularly

the derived requirements. It must be understood that many of the requirements for design are

derived requirements obtained as analysis and when tests are conducted. The more these can

be identified prior to phase C, the less costly the design phase will be.

B. Fourteen Guiding Principles

As mentioned previously, a set of 14 guiding principles has been developed to support

the system focus and highlight design practices (Fig. 75). These were discussed in detail in
reference 4. A few were selected for discussion in the seminar and are documented here_

1. Performance Requirements

Coupled strongly with the system focus is the principle that the higher the per-

formance requirements, the greater the sensitivity of the system, subsystem, or part to

variations in any parameter, including manufacturing, environments, tolerances, etc. Figure 76

is a curve illustrating this principle. The standard SN-curve is in general the inverse of this
curve.

The system performance requirements determine the design, technologies, penetra-

tions, etc., necessary to meet the goal of a safe reliable system. Performance requirements

are always broad in scope, encompassing not only the response but also all the characteris-

tics from design through operations. The higher the performance, by definition, the greater the

sensitivity of the design to uncertainties. Uncertainties exist in all areas of design: materials

properties, environments, analysis, testing, manufacturing, etc.
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Design in the flat portion of the curve canbasically bedealt with in a linear fashion. As
the design moves out on the curve into the steeper slopes, nonlinear analysis is implied. In
the first case, the design is inherently conservative and easier to predict since super position
works and the nonlinearities not used to gain margin arestill present and add to the margins.
(Nonlinearities in general are conservative.) In the latter case (high performance design), use
must be made of the nonlinearities in order to meet designmargins and performance criteria.
It should be pointed out that nonlinearities arenot easily predicted or analyzed and are more
sensitive to unknowns and changes. If the performance requirements are such that the design
is inherently in this region, then great care and accuracymust be taken to develop data bases,
define environments, and perform analyses,etc. Manufacturing, nondestructive investigation
(NDI), quality control, and acceptancecriteria parametersmust be enhanced.If, however, one
designs for robustness,the lower portion of the curve depicts the system,providing margin of
the performance index. The optimum lies somewherebetween the two extremes. The curve
can also be shifted to the right and down through data acquisition and increased knowledge,
in many casesa desirable approach (technology advancement).At the onset and periodically
throughout the program, sensitivity studies must be made to determine where the design
rests, what parameters should be made robust, and what the real optimum is, considering all
factors.

Another way of looking at this principle is to plot two parameters, robustness and
performance, concurrently versus requirements. As the requirements increase, performance
level must increase while in general the inverse is true of robustness(fig. 77). The curves are
shown in a generic fashion, where in specific terms the requirements, performance, and
robustness would shift relative to each other. Ideally, the design should balance best in the
large box centered where the two curves cross, producing some balance between
performance, robustness,risks, and cost. In the space business, as well as many others, the
trend is to apply linear thinking, with performance as the focus, thus ending up with the
design in the box at the far right or somewhere in between. This produces the results
previously discussed. What is required is that the linear thinking loop must be broken and
lateral thinking invoked, which jumps to the side and plays the game differently using
reliability (robustness), total cost, and performance in the balancing act. Lateral thinking is
also implied if one wants to shift the relative merits of the two curves. Clearly this shift
requires some creative jump to do things differently than the standard practice. Once the
lateral thinking jump has been made, the linear thinking approach takes over and serveswell.
In fact engineering basically is so founded.

Two examples from the spaceshuttle program will be given to illustrate the reality of
the performance sensitivity principles: (1) The 4,000-Hz SSME buzz, and (2) shuttle lift-off
loads. The SSME is a very high performance system that, on the lox flow side, has a very
high dynamic pressure environment. As a result, various coupled structures are very
sensitive to flow and acoustic/structural interaction problems. The main injector lox inlet has
a two-blade splitter in order to createa more uniform flow distribution into the lox dome (fig.
78a and 78b). Vane protrusion into this high-flow environment is susceptible to flow-induced
oscillations and, thus, fatigue failure. This occurred on the inlet splitter. Three engine units
have had cracked splitters. These fatigue cracks are believed, based on analyses and tests,
to be caused by vortex shedding off the vane trailing edge, occurring at the vane natural
frequency of 4,000 Hz. In addition to the three splitters with cracks, several other units have
shown the 4,000-Hz phenomenon, but at a lower level, without cracks. The amplitude
determines the alternating stresses, hence life. Figure 79 shows a spectrum of an engine
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response with and without the 4,000-Hz buzz. The without is the same engine with the
splitter modified to eliminate the buzz. Notice the narrow band sharpnessof the tuning. The
interesting part is that 20 percent of the enginesbuzz, the others did not at any time in their
test history. The buzz causehas to be due to small manufacturing differences in the bluntness
of the vane trailing edge and possibly small vane angle/offset differences or slight modal
shifts. To understand and solve this problem, extensive scale-model and full-scale flow
testing, static testing, dynamic testing, hot fire testing with special instrumentation, and
analysis was required over a 3-year period. The solution was to sharpen the vane trailing
edge and put a curve wider gap between the leading edge of the two vanes. No buzz has
occurred since the fix was implemented.

The space shuttle lift-off phase falls into this same category. There are several
problems or sensitivities associatedwith the shuttle lift-off (fig. 80). Most of these, SRB aft
skirt, debris, overpressure, and acoustics, have been discussed in earlier sections. The pad
and tower clearance has not been a problem but required detailed dynamics and control
simulations to define drift envelopes, operational requirements, and control system settings.
Simulations have been verified using control data (vehicle state) and camera coverage.

The lift-off loads have beenone of the vehicle and its elementskey design drivers and
are very sensitive to parameter uncertainties. Design loads must be generatedfor each time
slice of the mission profile peculiar to the part it designs. Not only must the loads data be
generated for nominal operating conditions with parameter variations, but for aborts and
contingencies also. The lift-off sequence as well as its dynamics were discussed in a
previous section. The aft skirt is designedby the weight and the stored moment introduced by
the SSME thrust and by the abort casewhich producesnot only the peak moment but several
oscillations for LCF concern. Lift-off loads occur after SRB releaseand are a very dynamic
situation resulting from the released stored energy and dynamic tuning between the five
elements connected by interfaces (spring) (fig. 32 and 33). Two SRB's, ET, orbiter, and
payloads produce these dynamic elements.The vehicle loads of this event are very sensitive
to small changes in the elements or the input parameters. Payloads, the element interface
hardware, and other hardware are designedby theselift-off loads.

Major efforts have been expended to first develop and verify structural dynamic
models using finite element analysis, scale model, and full-scale testing. Constructing a
systems model, including the dynamics of the launch platform, was a major challenge. The
definition of the parametric inputs with the statistics definition of variations for things such as
thrust, thrust vector offset, thrust misalignments, masses, winds, etc., in addition to
dynamics, pushed available technology. The final big hurdle was the development of a
technique that could handle time delays, nonlinearities in the development of a statistically
quantified time consistent sets of loads. A 2-sigma worse-on-worse parameter time

consistent combination was first used requiring approximately 30 different design load sets.

Monte Carlo time varying analysis has been used to further quantify these loads.

With the baselining of these procedures and criteria and the various loads analyses,

sensitivities became clear. Model refinements of the vehicle and pad were necessary. In

addition, the number of structural modes required for accuracy of loads predictions increased
first to 200 then to 300 modes below 30 Hz. Figure 81 shows the difference in the HST loads

for the different design load cycles, compared to the original design values. A factor of 2

increases on the secondary mirror occurred as did smaller increases of other components.
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Changes of this magnitude can be expected for multibody low-damped structural systems
with elements whose frequencies tune. It is aggravated by the unsymmetrical configuration
increasing the coupling.

As stated previously, for these high sensitivity regimes, extreme care must be
exercised in determining characteristics and operational criteria. As a result of these high
tech requirements, the reliability of the system requires greatly increased technology for
testing, analysis, manufacturing, quality, etc. Operations also, in general, become more costly
with tighter constraints and loss of flexibility. Does this mean that high tech design is not
pursued? In no way; however, increases in knowledge (technology) are required with tighter
acceptancecontrols. This means that judging a design's accuracy requires understanding the
operation point on the sensitivity curve.

2. Analysis and Test Are Limited

All simulations, models, symbols, patterns, etc., whether dealing with analysis, test,

management, etc., are just that, models which are not complete (limited) and are not exact

representations of reality but are mathematical or physical representations or symbols with

various assumptions of these facts. 4

The principle must be fully understood so that everything is constantly challenged for

applicability. The major problem we deal with is how this less-than-reality information is

meshed together to get verified, reliable systems. Obviously, this can only be done in some

probabilistic sense. In addition to the use of robust statistical approaches, how the limitations

of models, tests, etc., are dealt with determines the design outcome. There are many ways of

approaching the question; however, the fundamental approach appears to be a building block

approach using a combination of analysis and test. Fundamental to this approach are the

following steps: (1) formulate model, (2) perform pretest analysis and sensitivity studies to

guide test, etc., (3) perform test with proper instrumentation, (4) correlate predictions and

test, and (5) update model to produce verified model.

The space shuttle SRB aft skirt failure illustrates this limitation. Early shuttle loads

analyses conducted using simplified models of the launch pad and the SRB skirt produced a

set of loads thought to be accurate for the prelaunch SSME thrust buildup phase of launch. It

was understood that major skirt load would arise from vehicle weight combined with the

SSME thrust force. At full thrust, the four holddown posts away from the orbiter are loaded in

compression, not only from weight but also from the vehicle bending due to the SSME thrust.

What was not understood was the sensitivity of the local weld stress near the holddown post

to the pad stiffness (fig. 44)as discussed previously.

Part of the loads sensitivity of the aft skirt is due to the holddown mechanism which is

composed of the spherical bearing, bushing and aft skirt shoe (fig. 82). As shown on figure 83,

the bushing is offset so that the mating of the SRB to the pad could be enhanced. Since the aft

skirt load is a function of the radial displacement of the skirt of the post, this symmetry can be

used to prebias the skirts post inward, reducing the effect of the applied load and thus

increasing the structural margins (fig. 84). This approach is being used currently on shuttle

flights to increase the margins.
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3. Configuration Complexity Determines Penetration

Just as important is understanding the configuration complexity. It should be pointed

out that in many cases the attempt to solve one problem, even though simple, can create

problems in another area. Two areas will be discussed: (a) dynamics and (b) static 16ad

paths.

a. Dynamics

Dynamic systems are fairly predictable if they are basically a single body without
extreme geometric ratios. If the configuration is composed of several separate bodies

connected by the links, etc., the characteristics are those of a redundant structure and become

more unpredictable and sensitive. The bodies can dynamically tune, greatly amplifying the

response and reducing prediction accuracy. Reference 17 addresses the history and classes of

problems that have had their roots in complex dynamic configurations.

b. Static Load Paths

Static load paths are in the same category. The simpler the load path, the greater the

predictability; the more complex the load path, the less predictable. Unsymmetries worsen

the situation by loading both in bending and shear, coupling everything together. These

complexities produce stress concentrations, quality control problems, and nonplanar stress

fields, driving requirements toward more detailed analysis, testing, etc., to properly

characterize the system.

Configuration complexity is obviously a driver in determining adequate design.

Literature abounds with guidelines in these areas.

4. Bracketing Hand Analysis is Key to Understanding

One of the most important general principles is to make simplified hand analyses to

understand the phenomenon and guide more indepth computer evaluations. These should

include free body diagrams and flow schematics to provide visualization. A fundamental part

of this approach is the determination of the extreme or limiting cases. By establishing the

physical understanding of a problem and its bounds, greater insight and more efficiency are
established.

It cannot be emphasized enough that the fundamentals can only be grasped if we

maintain the ability to be fundamental. Use the computers and testings to aid the human

mind, not in place of it. Good design rides on this.

5. People Are the Prime Resource

For verified hardware to result, it must be recognized that people are the prime

resource for accomplishing the tasks. The only real resource we have to tape and motivate is
the human engineering exhibited in the diverse personalities in the organizations and how
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they utilize the available tools/resources. Management must recognize where the power is
and put its emphasison the major resource--people. All else are tools for making them more
efficient.

Saying this means that the first and foremost task of management and control is
leading people, the prime resource. What can managersdo? Nothing much new is on the
scene, however, basic principles alluded to by Drucker, 26-3° Peters,243132Deming,21 and
others, need repeating. First, whatever the individual has of value to the organizatiOn is
within himself. As Drucker says, "His development is not something done to him, it is not
another or better way of using existing properties. It is growth, and growth is always from
within. The work therefore must encouragethe growth of the individual and must direct it."
This means that individual responsibility is the key to performance. The discussions,
judgments, innovations, assumptions, etc., that take place at all levels are the ingredients
that determine design goodness.The source of this information and judgment is the human
resource, the individuals with their individual differences, that must be used, heard, and
melded together.

6. Criteria

Criteria or legal requirements must be simple, concise, and direct, providing order to

the engineering process; but not overpowering to where it stifles creativity and removes

responsibility.

The balance between criteria (formal organizational structure) and creativity (informal

organizational structure/leadership) is probably the most challenging task engineering faces°

Legal all-encompassing criteria produces order, but if excessive, removes responsibility, kills

innovation, suppresses opportunity to find the best solution, and stifles creativity.

"Optimal performance needs administration for order and consistency (formal), and

leadership (informal) so as to mitigate the efforts of administration on initiative and creativity

and to build team effort to give these qualities extraordinary encouragement. The result, then,

is a tension between order and consistency on the one hand, and initiative and creativity and

team effort on the other. The problem is to keep this tension at a healthy level that has an

optimizing effect." "Servant Leadership," by Robert K. Greenleaf.

Criteria and requirements are generally written to include guidelines, procedures, and

implementation schemes. This ought not to be. Criteria should be very concise and specific,

without justification, guidelines, etc., and should be based on sound engineering

understanding. There is a need for guidelines, procedures, and implementation schemes

including engineering equations, computer codes, instrumentation plans, test approaches,

etc.; however, they should be produced as separate documents and not be legally binding.
Greenleaf stated the case well in emphasizing the creation of teamwork. Teamwork is the

method for insuring the quality product. It is mandatory that government and industry, project

and engineering, etc., work as a team. If any group becomes a priest, the judge, excessively

binding the others in a legal manner, they destroy the team effort along with creativity. Space

engineering is always pushing the edge of technology, requiring the optimum development of
creativity in order to meet the combined performance, risks, and cost goals. This means that a

constant awareness and struggle is required to balance between the legal (criteria) and

creativity (informal) of the individual. This is one of the highest priority tasks.
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IlL LESSONS LEARNED

The lessons learned are the basis for the principles derived and, in some cases,

parallels these principles. Figures 85a and 85b contain a partial list of the lessons learfied.

Many of the lessons learned reinforce the theories and practices of TQM or quality

enhancement. The team approach with open communication is key and can be tagged as

simultaneous engineering, etc. The early use of constraints can undermine a design such that

its performance and quality can never be fully recovered. What is recovered is bought at a

high price. This is part of the system focus which leads to system analysis and testing as

discussed previously. One could write a report by rehashing these lessons learned. Most
stand alone and therefore are left for the reader. Reference 4 contains a more comprehensive

listing of lessons learned and design guidelines.

IV. DESIGN GUIDELINES

Design guidelines are not always generic in nature. Designing a liquid propulsion

engine is different from designing an air frame. There are, however, some general design

guidelines which are listed on figure 86. For example, one cannot design currently envisioned

space vehicles or spacecraft without insuring manufacturability and inspectability. Welds are
a more efficient means of connecting structure; however, the design should not feed peak
stresses into the welds. Weld lands can be used as a means of reducing excess stress as

well as weld shaving. Elimination of three dimensional dynamic coupling is a good design

goal. Where it cannot be eliminated, adequate frequency separation should be employed.

Design in the linear range should always be the goal, using nonlinearities for operational

margins. Margins must be specified and verified. Margin statements can be either
deterministic or probabilistic. This leads to the requirements for criteria, procedures and

philosophy to match the program. As a general statement, criteria used for design should be
deterministic; reserving the probabilistic for sensitivities and reliability; however, modern

computers in conjunction with basic statistical code development is making the probabilistic

approach a viable option. Limitations of analysis and test must be accounted for in design. All

design must be against total cost and should consider flexibility. What is not put in the design

must be made safe by operational procedures. Good design accounts for environment

variations through robustness of the response or through control of the environments.

Instituting automated data base should be a part of good design to enhance verification and

operations.

V. ENVISIONAL TASKS

As one looks to the future that includes planet Earth, lunar colonies, and Mars

exploration, certain tasks of a broad nature are envisioned. The first is design and

implementation of fracture control with all its associated tasks. Implied also is the

development of health monitoring systems. Future designs and effective implementation of
TQM will require simultaneous engineering including interdisciplinary analysis (system

focus). The list on Figure 87 is representative, but not all inclusive. The individual mission
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requirements, coupled with the design concepts,will determine the range of interdisciplinary
analysis. The system focus must use total cost as the criteria that the decision process
employs for design selection. Many of the systems proposed for the future must deal with
geometric and materials nonlinearity. Analysis techniques, testing techniques, and materials
characterization must be developed for these tasks. Combined testing, probably on orbit,
must be developed to verify systems. This includes instrumentation, mission planning, and
software updates to account for anomalies found. Statistical/reliability applied mechanics
techniques must be developed to properly assessrisks. All discipline technologies must be
extended to cover the new requirements. Robustness and sensitivity techniques must be l
extended to cover mission requirements in the design process.The customer (requirements)
and their continuous interaction with the project is the key to success.TQM is the overall
approach that must be used to ensure all these things are done to obtain a low cost, robust
system.

VI. PERSONAL LESSONS LEARNED

Most personal lessons learned are not of much value to others due to the situations

involved; however, a few encountered have particular value for engineering, especially
aerospace engineering.

Most of us envision ourselves as great thinkers, observers, and discoverers. As

engineers, we write of our investigations, evaluations, and lessons learned, giving little credit
to the influence of others. Yet, if reality is approached, "No Man is An Island," much of what

he projects was taught by others. As Deming says, "we cannot generate knowledge; it

comes from outside," Norman Cousins, while editor of Saturday Review, and serving as a

Presidential advisor, had the opportunity of asking several of the world's great men the

question: "What is the one lesson you have learned in life?" Each of us must pose the

question and extract answers, many times simple in nature, at other instances complex and

multifaceted. One lesson marked clearly in my mind is that I am, to a large extent, what I am

because of others. Obviously, our parents, friends, teachers, etc. have all played a part. I do

not want to minimize that; however, the examples chosen of lessons others taught are taken

from my professional life and will be geared toward an engineering application.

A. Lessons Learned from Dr. von Braun

Dr. Wernher yon Braun, the great German space leader who was in the forefront of

much of America's early space program through the Apollo lunar landing, taught me a lesson

that is deeply etched in my mind. As a young engineer, I was given an assignment associated

with clearing the first Saturn I launch vehicle for flight. The results had to be presented to Dr.

von Braun. The Saturn I, first stage, consisted of a core propellant tank (Jupiter missile

manufacturing) surrounded by eight propellant tanks (Redstone missile manufacturing) and

eight clustered engines. The upper stage of this series-burn vehicle was a Saturn IV stage

consisting of four R-L10 engines (inert on the first flight). Due to the potential for the vehicle

elastic body modes coupling with the control system, producing an instability, and the

dynamic complexity of clustered first stage tankage, accurate modal characteristics were

required. Analytical structural dynamic analysis, verified by a full-scale dynamic test, was the

chosen approach. This being one of the early full-scale dynamic system tests, much concern
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existed in terms of the elastic suspension system (attempt to simulate free-free modes)
coupling and distorting the experimental mode shapes.Early attempts to remove this effect
from the experimental data produced errors, poor correlation with analytical data, and control
system instability. My assignment was to show that the suspension system was not
affecting the data since the analytical mode shapescorrelated adequately with the dynarhic
test, thus it was safe to fly. The problem was that many modes of the clustered configuration
were very closely grouped in frequency. If the frequencies matched the test data, the mode
shapes did not and vice versa. As any good dynamist knows, if the frequencies are close,
then usually the critical match is modal, not frequencies.However, becauseof the emphasis

.that had occurred, it was decided that the correlation would be made on frequencies, not

modes° Dr. von Braun quickly saw the discrepancy and nailed me to the wall. After some

discussion, he said in a nice way: "I think you are trying to fool me; however, I don't believe

it will affect the results of your study or the conclusions, so let's hear the conclusions." The

conclusions were that the data, both analysis and test, were accurate. Therefore the control

system was stable and it was safe to fly. The vehicle flew successfully. The lesson is clear;

never shift the emphasis away from a basic for ease of presentation, stick to the

fundamentals. At the end of the meeting, someone questioned Dr. von Braun over the wisdom

of holding up a launch for two weeks to investigate a supposition. He answered with a

question: "What if he had been right? We have time to find out." Such is good engineering.

B. Lessons Learned From Dr. Geissler

Early in my career, Dr. Ernst Geissler, our Laboratory Director, taught me a very

embarrassing, but equally permanent, lesson. My supervisor had given me a set of equations

to solve and graph the results. He told me that he would not be in the next day and that I was

to give the results to Dr. Geissler. This, I did. It turned out not to be simple. Dr. Geissler

took the information then asked me to explain it. Since I was only following instructions and

had not been told what the equations were for, I had to say that I didn't know. Dr. Geissler

obviously knew what had happened, saying in his quite gentle manner: "Mr. Ryan, we

always have time to understand the results and what we are doing." Clearly this is a basic

that engineering must adhere to.

C. Lessons Learned From Mr. Horn

Helmut Horn, my Division Chief, had a unique way of working problems. Many times,
late in the afternoon, he would call me in to explain some problems. His technique was to

have you go to the chalkboard and explain algebraically and graphically the analysis and the
problem. Somewhere in this exchange, he would take the chalk and start constructing

simplified models to use for interpreting your data. In one of these exchanges, I was
presenting Saturn V elastic body modal response to the atmospheric winds, including the

induced aerodynamic forces. I was treating the problem using the Lagrangian approach and a

set of generalized coordinates and generalized forces. His goal was to show that the

distributed aerodynamic force and generalized coordinates for one mode could be represented

by a single mass spring damper system with a single point time force recoupled from the

other modes. This, I was able to do, but with much discussion required for the analogies. As I

remember, this went on late into the early evening. All at once, he stood up and shook my

hand making the statement: "You have done your homework." Then added: "We must

always try to understand our model, our analysis, with a very simple physical representation

of the problem. When this works, the answer is simple. If this simplified physical

29



representation doesn't work, then we must be able to explain why it fails and thus justify or
verify the more sophisticated analysis." Needless to say, that day is locked in my memory.
The capability and complexity of modern day computers and the expanding scope of analysis
makes this principle even more important.

D. Lessons Learned From Dr. Rees

Dr. Eberhard Rees, Marshall Center Director following Dr. von Braun, taught a very

important lesson in that we must, as managers, have real concern for people. Dr. Rees

decided late in a Friday afternoon briefing, preparatory for a Saturday Headquarters meeting,

that I needed to accompany the group to Washington Friday night and Saturday. This created

some problems for me since I had a Sunday appointment that could not be easily broken. Dr.

Rees promised that he would see that I got back. We were using the NASA Gulfstream

plane for the trip. Late in the afternoon Saturday, a snow started. The meeting was kind of

depressing due to the decisions reached, so after getting on the plane, I slumped down in my

seat. Soon, after Dr. Rees got in his seat, I heard him say: "Where is Bob Ryan? I promised

him we would get him back tonight." An expression of real concern in a very simple way
makes lasting impressions.

E. Lessons Learned From My Dad

When in high school studying algebra homework, I got stuck somewhat. Not wanting

to spend much time on the assignment, I turned to my dad whom I knew could work the

problem. Instead of working the problem and explaining the solution to me, in his great

wisdom, he asked me a question or two that forced me to think the problem through and work

it myself. Obviously, I was frustrated for awhile, but in the end, I was happy because I

understood the principle. In working with people and getting them to develop, we need to

follow this example. Our goal should not be to get the quick answer, but get the answer in a
way that develops the person.

VII. FUTURE THRUST (TQM)

TQM is a revolutionary concept that is transforming America through a change of

focus, new principles, and better tools, resulting in better quality, lower cost products and

services, and, consequently, a better quality of life. This concept fits all of us. We all have

a product to sell, a product to produce. Therefore, we all must define what our product is

and who the customer is. The process works by identifying what the product is, how the

product is made, how it is to be used, and what the total cost is. The concept focuses on

bringing a team concept up front to do the job better using simultaneous engineering, and

involving the customers and all product disciplines from conception to operation. The team

determines requirements, design, processes, etc., with the goal of producing a robust, low-

cost, flexible, high-reliability product. The process focuses on reduction of criteria and specs,

emphasizing variation reduction about the nominal instead of determining acceptable limits

(fig. 88 and 89). It deals with the total (quality) cost function emphasizing the quality lever

concepts which focuses up-front funding increases to get the right requirements and design
which reduces later costs of manufacturing, production, and operations. This translates into

fine turning the system without more total money. There is no more money. It recognizes the
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principle that "you must lose to gain;" an improvements cost. It means something must be
given up to improve. Giving up hurts. We resist hurt. Hard decisions must be made in terms
of stringent priorities. If we are willing to pay the cost, TQM offers a breath of fresh air to the
solution of our problems, providing a system with many new or innovative tools for
accomplishing the various parts of the process. In fact, many confuse the use of such tools
with TQM itself. Philosophy, principles, and tools must be adequately differentiated for
progress.

Fundamentally TQM is an attitude, an attitude which permeatestop management and
flows through the entire organization, that says that we can do better and will do better by
emphasizing the customer's needsand relying on the people to do thejob. Improvement must
be continuous; it has many dimensions:

- Reliability

- Maintainability

- Performance

- Durability

- Conformance (to requirements)

- People

- Poficy

-Management.

It emphasizes team play. As Deming,21 the American who was responsible for
transforming Japan, says repeatedly, "The orchestra, not the soloist, is the approach."
Underlying this is the attitude or belief in the goodnessof human nature. Most people want to
do a good job, and will if the system will let them. To improve the product, the system has to
be changed. This is accomplished in three ways. First, the customer, his needs, and
requirements are focused upon. These translate into a product of high quality and low cost.
Second, emphasis is placed on the people that do the job. They must be given the necessary
authority and be trained "totally" as well as in skills (Deming's principles). 6-91314Anyone
who has attended Deming's course remembers:"Does he know? How could he know? He is
only doing his best." This is repeated many times to emphasize the point that "Missing
knowledge is the rest of the problem." People want to do a good job, the system does not
permit it. Third, understand the process, change it where needed, observe the effects of
change, then repeat. It is to plan, to check, to advise, and to repeat the cycle. Just as
important is a constancy of purpose that is identifiable, communicable, and implementable by
all people in the organization toward product improvement. This essentially places the blame
or responsibility for quality on the system,and only managementcan change the system.

The emphasis on process and management implies that you can only change
something in a meaningful way if you understand it. To understand it you must be able to
describe it in a simple way, flowing the total processfrom customer to product. Inherent in
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this understanding is interpretation of data. Deming emphasizesover and over again that you
cannot properly deal with data without knowledge. You can only get knowledge if there is a
theory undergirding it as a basis to interpret data. Most of the time this knowledge comes
from the outside. You cannot generateknowledge, you can only generate heat (activity). If
the system generates fear then you will get the wrong answer, therefore, you must eliminate
fear. Emphasis must be placed on controlling variations instead of meeting specification or
tolerance limits. This places the responsibility back on the worker, where it should be, and
changes the whole attitude on how to approacha job. TQM is a continuous process,a culture,
a philosophy, a new way of life. As you can see,someof Deming's 14 principles are derived
from his emphasis on constancy of purpose, people, customer, and variance. The guiding
principles for an organization derived from these 14 principles are: quality first, customer
satisfaction, continuous improvement, managementcommitment, employee involvement.

TQM utilizes numerous tools, and additional tool concepts are under development.
They rely on statistics, teamwork, and people development (training and communication). Up
front always is the customer, his desires, his requirements. These requirements must be
translated into a product. Quality function deployment (QFD) is one tool available for
translating the customer's needsinto the manufacturedproduct through a structured format of
sequential matrices. Parallel to this must be the application of the tool simultaneous
engineering (SE) (a take-off on systems engineering), that addressesconcurrently, early in
the design stage, performance characteristics, production process factors, and operational
issues. Implied as mandatory is the use of teams with all pertinent disciplines represented,
interaction, and open communication. QFD and SE are strongly cross-linked. Parameter
design is the technique of establishing the optimum parameterlevels of a system.The drastic
change that inherently resists variation results in the best design. Taguchi, 36 a leading
quality expert from Japan,actually deals with design in three steps: (1) system design based
on experience and knowledge from specialized fields, (2) parameter design, and (3) tolerance
design, i.e., the adjustment of tolerances of the input parameters to get the desired output.
Analysis of variation (ANOVA) is a tool that allows you to judge what degree of
sophistication is required to reap the rewards of experimental design. A mathematical tool for
accomplishing this is signal-to-noise (S/N) ratio. The object is to increase the S/N ratio.

Implementation of TQM is not easy. There are many deterrents which must be
understood if progress is to be made. First and foremost, it requires a cultural change.
Changes in cultures are resisted. We do not want to move from a known, where we are
comfortable, to an unknown. There is always risk (perceived and actual) inherent in change.
Change means acting on priorities, making decisions to give up something desirable for an
unknown presumed to be more desirable. No one likes the loss required to gain (basic
principle). A further problem exists becausethe employee has a problem in his/her ability to
identify the difference between the quality of a product that meets limit specifications versus
a product produced under a variation reduction approach.On the surface, limit specifications
define acceptability, but the issue of quality is much deeper, which variation reduction
addresses.An additional implementation problem occursbecause,in general, we are doing a
good job. All major sensitivities and contributors have beencontrolled to achieve top quality.
What is left is fine tuning, dealing with small effects that, when combined with other small
effects, produce lower quality. "How are we going to overcome these impediments?" is the
major question we must deal with if we are going to implement TQM. The elements start
with constant managementfocus, training in skills and of the whole person, teaming, and the
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development of a new culture that properly considers the customer, the total cost, and the
integrity of all workers. It requires in-depth understandingof the total process, formulation of
hard questions relative to what and why we are doing this a certain way, priority decision to
change that which is not needed,and the ability to communicateour purpose.

In summary, TQM is a process that pays the greatest dividends by involving the
customer, leverage dollars, and up-front efforts to achieve high-quality, lower-cost products
through a multidiscipline team approach. If constraints or other considerations preclude the
up-front high-leverage payoff, it still has merit when applied to a single process (loads
analysis, CFD, testing, etc.) that one has under his control. The payoff is not nearly as high
but is well worth the effort. The bottom line is: start wherever you are and improve the
process.The attitude is contagious and with time will spread.Let it start with you.
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Information in pitch comes from all contractors and NASA centers. Lessons learned are mine based on activities and
discussions.

- Centers

JSC, KSC, MSFC, GSFC, LeRC, Stennis Space Center

- Contractors

Rockwell Space Division

Rockwell Rocketdyne Division
Morton Thiokol

Martin

TRW

United Booster Technologies
Perkin-Elmer

Lockheed

Pratt & Whitney

Europeans

Boeing
Universities

McDonnell Douglas
Chrysler

Shuttle Systems/Orbiter, Apollo

Shuttle Main Engine
Solid Rocket Motors

External Tank, Tethered Satellite, TOS, Skylab

HEAO, OMV, AXAF
Solid Rocket Booster

HST, AXAF
HST
ATD

Spacelab, Tethered Satellite, HST

Space Station, Saturn

Experiments

Saturn, Spacelab
Saturn

MSFC has worked in team mode on problems with contractors. Hard to differentiate contributions, although major
source of technical data was the contractors.

Contractors' efforts, working relations, and technical expertise over the years is greatly appreciated and coveted as we
move forward.

Figure 1. Information source.



Three Perspectives

A. 51-L Challenger accident investigation

B. Shuttle safe return to flight activities

- NRC (National Research Council)
-Audits: FMENCIL, Weld Assessment (SSME), Structural Audit

(SSME, ET), Fracture Mechanics (ET)
- Redesign: SRM, SRB Aft Skirt
- Shuttle Systems Environment Recertification

_h

C. 35 years engineering experience, mostly
with NASA

- Have synopsized by projects and problem causes
approximately 150 problems

Findings

Failures, problems, in general, were not due to undiscovered or missing
theory, but to the neglect or oversight of basic principles:

- Management
- Criteria
- Procedures

- Philosophy
- Test

- Analysis
- Communication/Documentation

- Project

Figure 2. Perspectives and findings.
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Problems Experienced and Envisioned

Purpose:

Approach:

Lessons Learned

Using problems experienced, develop lessons learned, and a context within which to
design new systems through short summary documentation

- Develop a matrix of problems experienced by project and discipline

1. Instabilities

2. Forced Response
- Static

- Dynamic
A. Environment

B. Response
- Static

- Dynamic

3. Modeling
4. Acoustical Tuning
5. Modal Tuning 7.
6. Manufacturing/Quality 8.
7. Fatigue (LCF & HCF) 9.
8. Fracture Control 10.

- Fracture Mechanics
-NDE

9. Special Cases

10. Development and Validation Testing (Improper)
11. Material Characterization

PrQjects

1. Apollo
2. Skylab
3. Viking
4. Jupiter
5. Redstone
6. Shuttle

A. System
B. External Tank
C. Solid Rocket Booster

D. Space Shuttle Main Engine

Hubble Space Telescope
Gravity Probe B
HEAO

IPS

-Approximately 100 problems categorized and documented; 50+ awaiting documentation
- Document a summary with pertinent data for each problem
- Develop lessons learned
- Project potential problems for future space endeavors

Figure 3. Lessons learned.



• Introduction

• System focus, underlying perspective

Requirements
Trades
Constraints

• Basic principles

• Specific examples to illustrate

- Performance requirements
- Models and test are limited
- Bracketing hand analysis

• Problems experienced

- Sampling of problems by project

• Lessons learned

• Design guidelines

• Envisioned tasks

• References

Shuttle example

"-4

Figure 4. Agenda.



Philosophy: Systems engineering/integration is the foundation.

All engineering must be seen and implemented using a system
focus. The parts are seen as interacting to form the whole. The
whole is seen as the sum of its parts performing their function.

This is the foundation for all major principles of design.

Figure 5. Philosophy.



• Subsystem optimization is costly.

• Constraints can undermine design.

• All disciplines must interact, even for subsystems.

° Total cost is the criteria.

• Systems optimization/requirements is the approach.

What is neglected in design (suboptimized) must be accounted for by
good system optimization during operations (pay me now or pay me
later).

'43
Figure 6. System focus.
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Figure 7o Design and verification A.
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Figure 8. Design and verification B.



Propulsion
• Solid

• Liquid
• Electric
• Nuclear

Avionics
• Sensors
• Software
• Hardware
• Actuators
• Power
° Communi

cations
• Guidance
• Control

Structures
• Composite
• Metalics

• Dynamics
• Fractures
• Stress
• Thermal

Design
• Mainline
• ComlP

nents
• Assembly
• Manufac-

ture/Con-
struction

• Technology Development
• Trade Studies

• Analysis

• Procedures

• Guidelines

Operations
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ments
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dures
* Robotics

• Assembly

Integration
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• FEMNCIL
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• Coatings
• TPS
• Character-
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• Assembly

• Simulation

• Optimization
• Criteria

• ICD's & End Item Specs

• Verification Plans/Complete
• Cost
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Note:

Mini Iteration Loop

Each subsystem (example,

propulsion) has the same
inner loops as illustrated for
the vehicle.

Fixes

Operational
System
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Figure 9. System design.
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Figure 12. Saturn lB.
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Vehicle Vehicle Stage
No.

Saturn 1B SA-206

Saturn 1B SA-207

Saturn 1B SA-208

Saturn 1B & V/Skylab Data3

D E F G H I

Total Engine Number of Average Payload Payload Wt.

Weight Type Engines Thrust Designation EO

(K-Ib) (K-Ib) (K-Ib)

S-1 B 996.1 H-1 8 203.6 SKYLAB-2

S-1B I.S. 6.7 0.0

S-IVB 254.6 J-2 1 228.0

I.U. 4.3 0.0

S.C. WET 44.0 0.0

LO Total 1,305.7 203.6

S-1B 996.1 H-1 8 205.6

S-1B I.S. 6.8 0.0

S-IVB 256.1 J-2 1 226.0

I.U. 4.6 0.0

S.C. WET 44.4 0.0

LO Total 1,308.0 205.5

31.0

SKYLAB-3 32.0

S-1B 1,681.3 H-1 8 205.6 SKYLAB-4 33.0

S-1B I.S. 6.8 0.0

J-2 1 . 234.0

0.0

0.0

205.6

S-IVB 278.9

I.U. 4.1

S.C. WET 46.0

LO Total 2,017.1

Note: EO denotes Earth Orbit

ESC denotes Escape

Figure 13, Saturn 1B performance.
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S-IC STAGE SEPARATED
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Figure 14. Saturn V.
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Q-BALL AND NOSE CONE _o

i

!

/
/

CANARDS_ _

LAUNCH
ESCAPE

MOTOR_

/

L,/

LAUNCH ESCAPE
MOTOR NOZZLE

LAUNCH
ESCAPE
TOW

COMMAND MODULE

FORWARD HEAT SHIELD_.

_/¢///--- B AL LAST ENCLOSURE

f

l S PITCH
/ (? CONTROL

I MOTO R
' /

t_; 1_ /

/_ TOWERJETT.ISON
/" ._""

MOTOR

, ', /-- TOWER JETTISON

_f"_,, _ MOTOR NOZZLE

,

/

_ HARNESS ASSY

(2 PLAC ES)

SKIRT

NOTE:
TOWER SEQUENCERS
OMITTED FOR CLARITY

ELECTRICAL
CONNECTOR

(2 PLACES)

Figure 16. Launch escape system.
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59 0
FEET

4 33.0 FEET

t
10.2 FEET

10,418

c I iIOETTANK ---- _-
LOX , \

2,830

7.0 FEET

AFT SKIRT

THRUST STRUCTURE
(WITH ENGINE 5.2 FEET
ATTACHED) t

AFT INTERSTAGE

19 "EET

Figure 18. S-IVB stage.
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VEHICLE
STATION
2519

81-I/2
FEET

TUNNEL

FORWARDSKI RT

--T
11-I12 FEET

1_

l
56 FEET

LIQUID HYDROGEN
TANK
(37,737 CU FT)

LH2/LOX COMMON
BULKHEAD

I LIQUID OXYGEN
TANK

22 FEET (12,745.5 CU FT)

L

VEHI CLE
STATION
1541 33 FEET

m£
AFT SKIRT

14-I/2 FEET THRUST

_T STRUCTURE

_ INTERSTAGE

18-I/4 FEET

Figure 19. S-II stage.
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FLIGHT TERMINATION
RECEIVERS (2)

GOX
DISTRIBUTOR

ANNULAR RING
BAFFLES

CENTER
ENGINE

FUEL
SUCTION
LI

HEAT
SH

LOWER
TH RUST RI

F-I ENGINES
(5)--

INSTRUMENTATION

RETROROCKETS

INSTRUMENTATION
T FORWARD

120.7 IN ,SKIRT
i

:I FORM
BAFFLE

LINE
TUNNELS (5)

SUCTION
LINES (5)

OXIDIZER
(LOX)
TANK

CABLE TUNNEL

UPPER THRUST
RING

FLIGHT CONTROL
SERVOACTUATOR

T INTERTANKSECTION
262.4 IN

I_

T FUEL

517 IN (RP-I)

L TANK

Figure 20. S-1C stage.
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Figure 21. S-V aero distribution.
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HUBBLE
SPACE TELESCOPE
CONFIGURATION

HIGH GAIN ANTENNA (2)

SECONDARY
MIRROR

APERTURE DOOR

SSM EQUIPMENT SECTION

FINE GUIDANCE OPTICAL

CONTROL SENSORS (3) ,..

\

PRIMARY
MIRROR

LIGHT SHIELD

AFT SHROUD

OTA EQUIPMENT
SECTION

SCIENTIFIC
INSTRUMENTS

AXIAL MODULES (4)

RADIAL MODULE
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STAR TRACKERS (3)

SOLAR ARRAY (2)

Figure 26° OTA with mirrors.
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121.52 ft ORB

333 
Dia. ET

146 in

Dia. SRB

54.2 ft

76.6 ft Overall

78.1 ft Span

153.8

149.6 ft
SRB

183.8 ft Overal
._.c41.75 ft

SRB

Figure 28° Space shuttle.
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External Tank
27.5 Feet Diameter

SRB Thrust/_
Attachment

Solid Rocket Booster

12.17 Feet Diameter

122.17 Feet 7---j
Orbiter- Tank-Orbiter ./_

T
78.06 Feet

1

154.2

184.2 Feet.

78.6 Feet

1

Orbiter Weight in Pounds (Approximate)

Orbiter Vehicle Total Dry Weight With Total Dry Weight

(OV) Three Space Shuttle Without Three Space

Main Engines Shuttle Main Engines

OV-102 Columbia 178,289 157,289

OV-103 Discovery 171,419 151,419

OV-104 Atlantis 171,205 151,205

Solid Rocket Booster Weights in Pounds (Approximate)

1,300,000, Each at Launch (Propellant Weight 1,100,000,

Each). Inert Weight 192,000, Each.

External Tank Weight in Pounds (Approximate)

1,655,600 With Propellants, Inert Weight 66,000.

56.6!1 _ '

20.9 Feet

Figure 29. Space shuttle weights.
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Side View of Shuttle on Launch Pad
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\
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I \
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Figure 31. Preliftoff side view.
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SHUTTLE LIFT-OFF LOADS COMPLEXITY

UD
o 300

X

I

Z

100

BASE BENDING MOMENT AND SEQUENCING

I

3.0 4.0 5,0 6.0 7.0

%

\
\

4=,==, '

I

!

T S MEC

r

t

SEQUENCING

SSME THRUST 90% ON ALL ENGINES - SRB IGNITION TIME BASE

LAGS UNTIL SRB IGNITION

-- CHECKS IN SYSTEM

- DELIBERATE OR PLANNED DELAYS

Figure 33. Shuttle liftoff sequence.



Space Shuttle Lift-off Transient

.J

/Ill

#7--

I
I
i
L_- V_, i
I

-- rl

1

- I1

"=s21

r l_u

_a3
J/A

= ],,_

_)2'.

I t

)((.'

i

/"7

/,'7 "
I

|1

I I

I I

I I

I I

,\ [] I I

Ij

|l

I I

fl

|f.

I I

-] ,,

llli

El

---.J _--=-

i

"-/

Aft Field Joint

Limit Load: 248x10/6 in Ibs

51-L: 208x10/6 in Ibs

Aft Skim

Limit Load: 347x10/6 in Ibs

51-L: 291x10/6 in Ibs

Figure 34a. Shuttle liftoff strut load response.

69



LIMIT DESIGN LOADS: + 230 KLB
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Figure 34b. Shuttle liftoff strut load response.
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Figure 35. Shuttle abort modes.
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•sop_n ionuoo pue o!umu,(p ollmqs "Sg _Jn_!,_q

"° j.

, 9NIIdN03 3108 -MVX e-------]
; ' $1N3NOdflO3 31RVN_0 'S3380J IOUINO3 SUOSN3S ]id113NR ONION318 "-'7 I

• NOISS3UddnS 300fl 3^IldV0V ,'_'_ I

-S33UNOS 33_0J IOUIN03 x31dflO3 S3UINO3U 9NlldN03 IOUINO3 'IWNIDflUIS '_UOI3]tV_I o.,,------_-=]

SIf_77RO#d lOYJ#O.) [

J
ONlldn03 1108 - MVJ, *--

S]SNOdS3U 31flVNA0 ]9UVl ]Soy3 SlSN9 •

---- _ 318V1S A83A X17V63N39 • /

;._/mr#_oo_)r ii
_- _'- IS]I (]NV S SAIVNV S31flVN_0- X]IdflO3 e_..,=--.

NOIl310]_d NIV/_]]NN- 1VNOISN]fltO I-_IISN30 3vOOIN HOIH •
SR]ISXS NOiSlndOUd -l.llnfl *

011df103 9Nl6dS 'S31OOB IVU]A3$ •

531l_ILI]13V_YV//3 311fVN,(O

t'-



..J
tJ1

Vertical Orientation

Lateral Acceleration at Liftoff

if Engines Gimabled to Give
Minimum Rotational Transient

or Rotational Transient if Engines

Not Gimabled

Non Symmetric Support and
Holddown Forces

Common Problems

Static Bending Due to Weight
and Wind at Release Leading

to "Twang"

Complicated Geometry to Track-
Such as Wing Tip Below Pedestal

Holddown Orientation with Respect

to Prevailing Winds

Large Aerodynamic Lifting
Surfaces

Figure 39. Shuttle liftoff considerations.

Tilted Orientation

More Vertical Liftoff

/

I

'lI

I

More Complicated Holddown

Possibly More Complicated
Reference Alignment and

Control Axis Reference

Possible Fuel Fill Problems
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Pre:

Manned vs. Unmanned

Initial:

65 k Payload, Maximum 60 ft Length x15 ft Diameter
Flyback Booster
600 k to 700 k Liquid Engine (Booster and Orbiter)
Orbiter Ferrying Capability
$14B Cost
All-Weather Auto Land, etc.
Cross-Range

Mid:

Constraint on Cost

Elimination of Flyback Booster, OrbiterFerrying

- Pressure Fed
- Liquid
- Solid

-4

Selection:

1 1/2 Stage Parallel Burn Solid Boosters
Water-Recoverable Boosters

65 k Payload, 60 ft Length x15 ft Diameter (Maximum)
SSME Thrust 470,000 VAC, ISP 453 (High Efficiency, Low Weight, High Technology)
Passive Orbiter Heat Protection Tiles (High Technology)
Modified Delta Wing
Expendable Propulsion Tanks (ET)

Figure 41ao Shuttle evolution,
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Constraints:

150 klb Orbiter
$5.5B Cost
Dynamic Pressure ("Q")
Max "G"
Abort

ET Disposal

Reentry Designs Orbiter
SRB Water Recovery
Expendable External Tank
Reduced Analysis and Test
Volumetric/Weight of Engine
Performance Reserve Allocation

Constraints Impact:

Orbiter Could Not Meet 150 k (165 k).-_- 180 k -_ 190 k Inert

104% and 109% SSME (Operational)
Lightweight Tank
Lightweight Higher Performance Solid

Overpressure
Water Suppression
High Acoustics
Payload at Noise Source
Unsymmetrical Multibody Nonvertical Lift-Off; Stored Energy Release
Strongly Coupled Ascent

Operational Impacts:

Dynamic Pressure
Loads
Ice (Damage to Tiles)
Performance (Payload to Orbit)
Temperature
Weather

Launch Probability
Additional Analysis, etc.

Figure 4lb. Shuttle evolution.
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Sensitive or Marginal System

SSME Lifetime (Refurbishment and Maintenance) (Process Control and Inspections)

Orbiter Tiles (Debris Damage) (Refurbishment)

Extensive Redesign

Specific Mission Trajectory Shaping
Detailed Launch Simulation Go - No Go

Costly Operations Including Launch Holds

Marginal SRB Skirt (Flight Instrumentation, Puck Biasing, Inspection)
SRB/SRM Refurbishment

Under Consideration:

ASRM with 12,000 Ib Performance Improvement
Engine Upgrades

- Two-Duct Hot Gas Manifold

- Large MCC Throat

- MCC Casting

- Weld Eliminations

- Alternate Turbopumps

Figure 41c. Shuttle evolution.
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90"

80-

70-
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30

10

0

-10

-20

-30 _ t

0

POST 7 & 8 EFFECT OF RADIAL LOAD POST 8

I-t

I

tWELD
LINE

I

2O

POST 7
m

i i i I _ I

40 60 80 100

POST 8

120 140 160

DEGREES FROM +Y SRB AXIS

180

n 50% RADIAL + 100% RADIAL

Aft skirt radial load sensitivity.

,150% RADIAL

Figure 43.
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• Aft Skirt Post With Axial, Radial & Tangential Load

R T
A

O

C
L

Skirt

Compressive Axial-
Load Shown

Figure 44. SRB skit load path. ,_
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DETAILED
i

POST REDESIGM HOPILIHEAR STA-2B LOADS

AHS'r'S 4.3
FEB 15 1988
12:95:58
PLOT MO. 2

POSTI STRESS

E" p-jTE -28

ITER=I©O

EP© fAVIT_

XV =- i

YV--.5

7V=-I

DIST = 18.3

>/,F=-58. 8

YF ='86.4

ZF = 83.9

H T DDEFI

MX = . 8@944

r,IH = t3

.6@8871

@8197

88387

I 88417

I 8o52T
I 88637

E_ @8747

@@857

8894_4

Figure 46. SRB skirt stress distribution along skin surface. - . .



SRB 3D SOLID ELEMENT/1 DIA. LENGTH MODEL

[
,

i

PLANE STRAIN
THIN WALL

_-l"lll I i 1 i I 11

I
i
I

3 _- .291" @ 1000 PSI
| •

!
! l ! i till -

1 A STA 1491
STA 1510.9

:T STIFF
P8 R ING

!':'_:.-...

PROPELLANT /

A=re8

L$= r (.._ -v o._.z_z)E

,A =. -_- --v

A=-N- 1-_-
1

.15

DIM (INCHES)

a = 28.95 - 31.9

b = 72.5

c = 73.05

PROPERTIES

Ec = 30 x 106 PSI, v c = .3

Ep = 600-900 PSi, v p = .499

oc
_J_ Figure 47. SRM o-ring/segment joint.
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O-RING GROOVE TOLERANCE EFFECTS

MAXIMUM O-RING (DIA.285)

MINIMUM GROOVE SIZE

,o;..,o''_ ...... •
,o" . • . _ °°,o

°- . _ • • • %°

• : : • - • . . ".'.

............. :..:....... ....-.: ..... : ..

NOMINAL O-RING (DIA. 28 IN.)

MAXIMUM GROOVE

oo
"-,3 Figure 49. O-ring groove tolerance effects.
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O-RING DISPLACEMENT SHAPES FOR VARIOUS STATES OF COMPRESSION

fRESPONSE NODES

_TANG

FLOW_ GAP "

ii .310 IN =

_'_ O-RING GROOVE

_O-RING (.280 IN)

a} O-RING MODEL IN GRQOVE (UNDEFORMED)

"- "" '"/ '':" /_!

__ ,,,-. "t; ..... '" o,,..

b). O-RING COMPRESSED 0.035 INCHES

c)

...... ._.:..--,".-...:--- .... ......
.,, ", ,, %° ; ., = ; °%

.....::.."./ "..z.."-- ...:::...

,&o,,- '; o.- . • .,o :oo ; %,;

"" .:=" ,-:_ ;t- -s. .=

O-RING COMPRESSED 0.046INCHES

......;.:"i"_:"". ....

.." : ;_-" ,,., ..; - •

;- ..'......:_. .... _.':.. "-.::..

d)

NOTE$1DE
CONTACT WITH
GROOVE

O-RING COMPRESSED 0.064 INCHES
(STEEL ;TO STEEL CONTACT)

Figure 50. O-ring displacement for useless states of compression.
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SSME I I ROLL

BUILDUPJ LIFTOFF JMANUEVER 1
5O

45 -

4O

35

30

O

HIGH "'Q"

m

0 25 _'___ ._

._ 20---- _
<

0 " • --

_-

15--
/

k.
10--

5--

IA

0

I
0

X B"'-'_ _ "_

O; ""'-..

" 0 FWD PRIMARY

x x

O AFT PRIMARY_

x

AFT SECONDAR Y

O FWD

X AFT

1

PLUS AND MINUS
COMRINATION OF
DESIGN LIMIT LOAD

,1, , ,, 1,,, ,
6O 70

53

, I , , , I i , , , , 1., , , , I I , , , ! ' '
10 20 30 40 50

TIME SCALE (SEC)
I i

'13 33
SRM TIME SCALE

Figure 51. Shuttle liftoff transient.
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kid
ORGANIZATION:

NASA/ED22

CHART NO.:

8

MARSHALL SPACE FLIGHT CENTER

51-L ANALYSIS OVERVIEW

NAME:

DATE

J. TOWNSEND

APRIL 25,1986

c,o
O-
Z

0
Q.
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z

O --
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z
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o
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o
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<

-5-

-10 -

-15

-20-

-25

.0

I.

LIFTOFF SEQUENCE OF EVENTS

MY

AXIAL LOAD

SSME /

SIDE
LOADS

i

i
l

i

't

I

MY

3HZ
i i

I
J

J I
I
I
I

_" DYNAMICD

OVERSHOOT !i
i

i

LOAD

2 3

SSME BUILD UP _i

(TWANG) SRB IGNITION '4

SRB TIP DEFLECTION
' 26" 51-L @ .25 HZ

" ]

4 5 6

TIME -SEe

7 8 9

LIFT-OFF

TRANSIENT
LIFT-OFF

10

J
r I

Figure 52. Liftoff sequence of events.
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Figure 53. Analytical to flight strut load compressions.
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STRUCTURAL EFFECTS/FINDINGS

Q PRIMARY PARAMETER DETERMINING FIELD JOINT GAP OPENING iS RADIAL PRESSURE

• MOMENT

• SHEAR

• STRUT LOADS

• RADIAL

• LINE (PRESS/THRUST/ACC'L)

7%

1%

7%

65%

20%

AFT FIELD JOINT LIFTOFF

• EXTERNAL LOADS AND DYNAMICS HAVE A SMALL EFFECT ON SEAL GAP OPENING

• .THE FORWARD FIELD JOINT HAS THE HIGHEST LOAD AND SEAL GAP OPENING
(8 MILS MORE THAN AFT FIELD JOINT)

• GAP PEAKS AT LIFTOFF THEN DECREASED DURING MAX "Q" TO APPROXIMATELY
80% OF LIFTOFF VALUE -- MAJOR GAP OPENING OCCURS WITHIN 600 MILS OF
IGNITION.

• THERE IS A VEHICLE STRUCTURAL DYNAMIC OSCILLATION DURING THE LIFTOFF
TRANSIENT OF APPROXIMATELY 3 HZ. THE OSCILLATION ADDS +_2 MILS TO THE
SEAL GAP OPENING.

Figure 58. Structural effects findings.



STRUTLDAD
(LR)

40000 - ...... :

20000 -

0

-20000

-40000 -

-60000 -

m

I-80000
3O

M : MEASUREDLOAD

R = RECONSTRUCTED(ANALYSIS) LOAD

ii i i ii i _ ii L LI II J III

TIME(SECONDS)

7O 75 80

LIMIT DESIGN LOADS: + 230 KLB
- 258 KLB

COMPARISON OF MEASURED VS RECONSTRUCTED FLIGHT
LOADS P10 STRUT- STS-3 FLIGHT

Figure 59a. Max "q" strut load reconstitution.
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STRUTLOAD
(LB)

M = MEASURED LOAD
R = RECONSTRUCTED (ANALYSIS) LOAD

30 80

TIME (SECONDS)

LIMIT DESIGN LOADS: ,+ 230 KLB
- 258 KLB

COMPARISON OF MEASURED VS RECONSTRUCTED FLIGHT .

LOADS P13 STRUT- STS-3 FLIGHT

Figure 59bo Max "q" strut load reconstitution.



Static Moment Balance of Misalignments at Lift-off
Orbiter Control Only

Solids Canted 15 in Yaw

Solid Misalignments in Roll*

.5 _/2- = .3535/Solid
2

Solid Misalignment in Yaw*

.5 _2- -.3535/Solid
2

Solid Thrust Differential

4.2%'_/2" - 2.96%/Solid
2

Lateral CG Variation (.0508 m)

6y Trim 5R Trim

deg deg

5.87

.62** 2.6 3.2

.29*" 1.2 1.49

.62 ** 2.6 3.2

5MAX Trim

deg

5.87

RSS Total 8.47

* Mutually Exclusive

*'5 R Required to Cancel Roll Moment Due to 1 5y = 4.18

Figure 60. SRM thrust vector misalignment effects.



PERFORMANCE

DISP

Q [ //s- -_-.-......_ -2

[I/ v;..,
0L I ! J

1.0 2,0 1.0 2.0

MACH NO. MACH NO.

(+)

acf

VEH

(-)

DESIGN

NOM, DESIGN

5.4 UPPER

ALLOWABLE

FOR SYS

DiSP AND

WINDS

_---_.4 LOWER

MACH NO.

LOADS

(*)

Oa

VEH

(-)

0 --

DESIGN

5.4 UPPER

ALLOWABLE

/ FOR SYS
DISP AND

NOM. DESIGN WINDS

MACH NO,

(+)
0

DO

VEH

(-)

OFT RESULTS

UPPER

_..... .... _ 5.4(REF)

_NEW UPPER

/ I .EDUCEDALLOWADLE

_w _OWE.

MACH NO.

LAUNCH
PROBABILITY

VEt!

(SYS DISP
AND WINDS

ALLOWABLE)

_2500 /

, I • ,J

S0 tS

LAUNCH PROB

Figure 61o Ascent pararneters.



/_VEH

,/'_ VR

• Original Design Achieved Op.timum Balance
(Performance, Loads, Launcn _,roDaoility)
at _VEH = "2°

• General Features of Wing Load are:

Figure 62.

• If _VEH Shifts More Negative:

Leading Edge Loads Increase

• External Tank Loads Increase (Protuberanc_-_)

• Wing Body Loads Decrease

• Trajectory Tends to Loft (Performance Loss)

Loads and performance relationship.
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L_

OP WAVE

kl
/ _

L2

/_p+

/
/

,'"APPARENT
' SOURCE

/t
//
/
/
/
/
/
/
/
/
/,

/
//
/

Pc (t)

ACTUAL

/ I "

t

r ,f Pc
PC (t) PC = _oo

V ! .
T O

Figure 64. Overpressure model.
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18" DIA

NEW SRB OVERPRESSURE
WATER SPRAY HE,t

12" DIA PIPE t

TO SSME HOLE_

SRB AFT SKI RT\

WATER BARRIER
(10 BAGS/PRIMARY HOLE

12" DIA PIP

24" DIA PIPI

BLAST
SHIELD

2" DIA PIPE

24" DIA PIPE

SUPPORT PORT

18" DIA PIPE

ER BARRIER
(20 BAGS/SECONDARY HOLE)

_'_MLP DECK 0

311" DIA PIPE

DIA PIPE

Figure 66. Overpressure suppression modso
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WATER INJECTION
AT DEFLECTOR CREST

WATER INJECTION FOR
CURRENT SHUTTLE CONFIGURATION

(AT TOP OF LC-39 MOBILE LAUNCHER)

MULTIPLE WATER INJECTION AREAS
TOP OF MOBILE LAUNCHER, OVER EXHAUST DUCT, DEFLECTOR CREST

l I ! I I

2 4 6 8 10

WATER INJECTION RATIO, Ww/W P (LB. WATER/LB. PROPELLANT)

|,,

12

Acoustic levels with and without suppression

Figure 69° Overall sound pressure levels with and without suppression°



Pre STS-26 Containment System

Detonator/Booster (PYRO)

Frangible Nut

Holddown Stud

SRB Holddown Post

SRB/MLP
Interface

Holddown Post
Shoe

Figure 70. SRB holddown bolt configuration.



Hung-Up Bolt

• Specific cause unknown
• Possible caused by skewed

PYRO firing
• .Two bolts hung-up on STS-2
• One bolt hung-up on STS-4, '

STS-51 I, STS-61A, STS-34 and
STS-33

Non-Fracture of Frangible Nut
• Dual failure
• Low pribability of occurrence

Debris Catcher

Detonator (NSI) (2)

Frangible
Nut

32"

t
Top of Support
Post Ball (Ref)

!
I
!

Holddown
Stud

MLP Support
Post

Shims

Figure 71. Debris containment system.
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Old Design

STS-26, 27, 29, 30

New Design

STS-28, 34, 33

Old

Property

UTS (KSI)
YTS (KSI)
Elong (%)
Toughness

A - 286

140.0
95.0
12.0
14.1

New

Annealed MP35N

132.0
53.0
68.0
62.9

Figure 72° Attach link material changes after STS-30.
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•CONTROL CONFIDENCE

.

LT_

MPTA

76 77 78

CALENDAR YEARS

A B

ET/SRB ET/SRB/DO
HVGVT (2) ET/DO

SEN. STUDY HVGVT (2}
SEN. STUDY

Confidence

BASELINE

95

9._._._2c

' I k ' ' I
• FMOF 79

C

ETP3RB/DO
ET/DO
ET/SRB/101 ORB (1 COND.)
SEN. STUDY

factor versus test combination (control).

Figure 73. Dynamic test option risks.
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Design Co nstrai nts

q (z = +4,000 - 3,000

q 13= + 3,600

REF

I

I

8 = a I _ + b0 o_

• Increased Sensitivity to Elastic

Body Stability and Response

• Reduced Stability Margins
• Increased Gust Loads

• Requires

Complex Controls VS Beefup VS
FPR Loss

Large Lead InSensing Wind

Load Relief

Fast Rotation in to Wind

to Reduce q o_and q 13

High Gain

Accelerometer
Feedback

Control

Signal Control _'1 "

s ste el
I I I

Control Force ol _.1 I_

__ + ~ VW Wind

Figure 74. Control system complexity versus dynamic test. "



•

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Performance Requirements Drive Design.

Philosophy Sets the Course and is Fundamental to Approach•

Interfaces are Compatible and Well Defined.

Configuration Complexity Determines Penetration.

The Sum of Parts is Not Equal to the Whole• (System)

Statistical Significance Determines Design Adequacy•

Design for Robustness, Growth, and Flexibility.

People are the Prime Source. The Secret of an Organization (Quality) is the Development of People, All
People, Not Only in Skills But Totally.

Analysis and Test Are Limited• Bracketing Hand Analysis is Key to Understanding.

All. Data Must be Characterized, Justified, and Understood: Environments, Materials, Propulsion, etc.

Read and Understand What the Hardware is Telling You. It has the Real Message.

Good Engineers Must Touch Hardware. It is Better if They Have Done Manufacturing, Run a Lathe, Built
a Cabinet, Struck a Weld, Shot an Alignment, etc.

Proper Relationship Between Project Management and Science and Engineering With Clearly Defined
Roles and Mission Between Government and Contractor.

Open Communications Mandatory for Quality.

Criteria or Legal Requirements Must Be Simple, Concise, Direct, Providing Order to the Engineering
Process; But Not Overpowering to Where it Stifles Creativity and Removes Responsibility. Aerospace

Engineering Requires the Best Answer.

Figure 75. Underlying design principles. _
,4



Max Weight Sav. Design

Design for Robustness

Performance

Design Points

Figure 76. Sensitivity versus performance.



Robustness

_ Max Wei_lht
c¢ - Sav. Des,gn

Design for Robustness

Design Points

Performance

Figure 77° Robustness, sensitivity versus performance.



ASI INJECTOR/COMBUSTION
CHAMBER

THRUST CONE

INJECTOR OXIDIZER MANIFOLD

OXIDIZER VALVE

OXIDIZER
POSTS (600)

FROM HOT-GAS E:_MANIFOLD

FROM HIGH
COOLANT CIRCUIT

COLD HYDROGEN
CAVITY

BAFFLE El

(75)

!

!
SECONDARY
PLATE

PRIMARY
PLATE

MAIN ELEMENTS

(525)

,,,j Figure 78a. SSME lox dome and splitter.
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(3-10)

1.0E÷003

b
O3

_3

1.0E-002

TEST 7500262
I I

4025.0 662.05
4412.5 2.09
2012.5 1.59
4075.0 1.29
3687.5 0.91

:- 3562.5 0.87
- 4312.5 0.81
- 3737.5 0.76
- 4262.5 0.76
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Figure 79. Spectrum of gimbal bearing acceleration.
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° Load Sensitivities

° Aft Skirt

° Payload Loads

° PerformanceLoss

° Debris

° Pad and Tower Clearances

° Overpressure

° Acoustics (Payloads at Source)

Figure 80. Liftoffproblems. -- _ ,.



COMPONENT

PRIMARY
MIRROR

SECONDARY
MIRROR

DIR

DESIGN
VALUE

MAXIMUM ACCELERATION (G's)
LIFT-OFF LOADS

P.L.C. I.L.C. C.D.R.

X
Y
Z

X
Y
Z

3.7
2.4
3.7

3.8
3.5
6.7

3.1
1.1
2.6

3.1
2.3
5.0

3.5
1.2
2.0

3.4
2.6
3.3

4.5

0.9
3.2

4.5
2.3

12.9

P.L.C.
I.L.C.
C.D.R.

= PRELIMINARY LOAD CYCLE, USED 5.4 SHUTTLE DATA
= INTERMEDIATE LOAD CYCLE, USED 5.7 SHUTTLE DATA
= CRITICAL DESIGN REVIEW LOAD CYCLE, USED 5.8 SHUTTLE DATA

)..-A

to Figure 81. Design values and analysis cycle values.
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Holddown Assembly

MLP

Support
Post

Blast
Container

Holddown
Stud

RB
Aft Skirt

Frangible
Nut

-,,-.-- Aft Skirt
Shoe

Bushing

Spherical
Bearing

Figure 82. MLP bushing rotation anomaly ....



Holddown Assembly

Bearing

Bushing

j I

I _ Support. Post

Figure 83. MLP bushing blowup.
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• Constraints Imposed Early Create a Suboptimized SystemWhich Transfers and Increases the Cost, etc., in

Operations.

• Communication is Mandatory for Quality.

• Must Work as a Team Composed of all Areas.

• All Great People Make Company With Good People, Not Necessarily Agreeable People but Good People.

• Extreme Environment Variations (Cycles) Are Hard to Deal With in Long-Life Machines.

• System Analysis is the Key to Good Design.

• Sensitivities Must be Quantified and Understood.

• Dynamic Systems with Large Energy Sources are Very Susceptible to Problems.

• Elimination of Subsystem (Element) Testing and Analysis Leads to Trouble.

• Start All Complex Analysis with Basic Hand Estimation.

• Dynamic Tuning Should be Avoided.

• Never Neglect the Potential Coupling Between Structures, Acoustics, Flow, Control, etc.

• Models are Only as Good as the Assumptions Made and the Experimental Data Input.

• All Testing Must be Preceded by Pretest Analysis Giving Procedures and Instrumentation, Followed by Model
Correlation and Updating.

Figure 85a. Lessons learned.
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Very Accurate Definition of the System is Required ifit Must Operate Near a Stability Boundary or Margin Limit.

Know What is Critical to the System; Model, Analyze, and Test That Area Accurately.

Adequate Instrumentation is Required on All Tests and Flights and is Mandatory for All Critical Areas During
Development Flights. Instrumentation Should be a Part of the Design.

Multi-Body Dynamic Systems with Low Damping are Susceptible to Problems.

Phases A and B of a Program Must Uncover Critical Technologies and Develop Approaches and Capabilities for
Their Solutions.

Read the Hardware; it has the Answers.

Use Non-Linear Margins, etc., Only as Last Resort. Avoid During Design.

People Determine the Design, the Hardware.

Requirements, Constraints, etc., Leveled Early, Determine the Basic Hardware. Changes Made Later Are Only
Tuning of the Original. It Is Nearly Impossible to Start Over With a Clean Sheet of Paper.

Figure 85b. Lessons leamedo
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2.

3.

4.

5.

.

7.

8.

9.

10.

11.

12.

15.

Design Hardware for Inspectability and Manufacturability.

Eliminate Welds or Design Peak Stress in Parent Material Not Welds.

Design and Manufacture in Quality. Inspect for Insurance.

Eliminate Static and Dynamic 3-D Coupling Where Possible.

When Possible, Design in the Linear Range. Achieve Robustness.
as the Last Resort.

Match Methodology to the Problem.

Margins Must be Specified and Validated.

Procedure/Criteria/Philosophy are the Backbone of Design.

Employ Nonlinearities

Design Against Deterministic Criteria. Invoke Probabilities to Determine Sensitivities and
Reliability.

Limitations of Analysis and Test Must be Well Understood and Documented.

Design Against Total Cost With System Optimization.

Design for Flexibility. What is Not Put in the Design Must be Made Safe by Operational
Constraints, Maintenance, etc.

Institute Early Automated Data Basing.

Design for Insensitivity to Environments (Natural, Induced, Corrosion, etc.) or Control
Their Variation and Accurately Define.

Hydrostatic Damping Bearings Have Promise for High-Performance Turbo Pumps.

Figure 86. Design guidelines.
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• Design for and Implement Fracture Control

- Linear Elastic Fracture Mechanics

- Plastic Fracture Mechanics

- Materials Characterization

-NDE

• Interdisciplinary Analysis

- Thermal/Structural

- Fluid/Structural

- Structural Control Interaction

- Aero Tailoring

- Etc.

• System Focus/Total Cost

• Nonlinear Analysis

- Geometric

- Materials

• Combined Testing

• Statistical/Reliability Applied Mechanics

° Extend Technologies

• Robustness/Sensitivities

° Customer Interaction, Feedback for Requirements

• TQM

Figure 87° Envisioned tasks.
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